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CHAPTER 5

5.1	 INTRODUCTION

This chapter introduces some of the statistical 
concepts and methods available to climatologists, 
but does not provide detailed specifics of complex 
subjects. Some statistical methods are given only 
cursory treatment, while others are ignored. The 
references at the end of the chapter and textbooks 
on statistical theory and methods provide more 
detailed information. Two references that should 
be on every climatologist’s bookshelf are Some 
Methods in Climatological Analysis (WMO-No. 199) 
and On the Statistical Analysis of Series of Observations 
(WMO-No. 415). Since new and improved statisti-
cal and analytical methodologies are rapidly 
emerging, climatologists should maintain aware-
ness of current techniques that have practical 
applications in climatology.

The main interest in the use of observed meteoro-
logical or climatological data is not to describe the 
data (see Chapter 4), but to make inferences from a 
limited representation (the observed sample of 
data) of complex physical events that are helpful to 
users of climatological information. The interpreta-
tion of climatological data usually involves both 
spatial and temporal comparisons among charac-
teristics of frequency distributions both. These 
comparisons answer common questions such as:
Are average temperatures taken over a specific time 
interval at different locations the same?
(a) Is the variability of precipitation the same at 

different locations?
(b) Is the diurnal temperature range at a location 

changing over time, and if so, how?
(c) What is the likelihood of occurrence of tropi-

cal storms in an area?

Inferences are based directly on probability theory, 
and the use of statistical methods to make infer-
ences is therefore based on formal mathematical 
reasoning. Statistics can be defined as the pure 
and applied science of creating, developing and 
applying techniques such that the uncertainty of 
inductive inferences may be evaluated. Statistics is 
the tool used to bridge the gap between the raw 
data and useful information, and it is used for 
analysing data and climate models and for climate 
prediction. Statistical methods allow a statement of 
the confidence of any decision based on applica-
tion of the procedures.

The confidence that can be placed in a decision is 
important because of the risks that might be 

associated with making a wrong decision. Observed 
data represent only a single realization of the 
physical system of climate and weather, and, 
further, are generally observed with some level of 
error. Conclusions can be correct or incorrect. 
Quantitative factors that describe the confidence of 
the decisions are therefore necessary to properly 
use the information contained in a dataset.

5.2	 HOMOGENIZATION

Analysis of climate data to detect changes and 
trends is more reliable when homogenized datasets 
are used. A homogeneous climate dataset is one in 
which all the fluctuations contained in its time 
series reflect the actual variability and change of the 
represented climate element. Most statistical meth-
ods assume the data under examination are as free 
from instrumentation, coding, processing and 
other non-meteorological or non-climatological 
errors as possible. Meteorological or climatological 
data, however, are generally not homogeneous nor 
are they free from error. Errors range from system-
atic (they affect a whole set of observations the 
same way, such as constant instrument calibration 
errors or improper conversion of units), to random 
(any one observation is subject to an error that is as 
likely to be positive as negative, such as parallax 
differences among observers reading a mercury 
barometer). 

The best way to keep the record homogeneous is to 
avoid changes in the collection, handling, trans-
mission and processing of the data. It is highly 
advisable to maintain observing practices and 
instruments as unchanged as possible (Guide to the 
GCOS Surface and Upper-Air Networks: GSN AND 
GUAN, WMO/TD-No. 1106). Unfortunately, most 
long-term climatological datasets have been 
affected by a number of factors not related to the 
broader-scale climate. These include, among other 
things, changes in geographical location; local land 
use and land cover; instrument types, exposure, 
mounting and sheltering; observing practices; 
calculations, codes and units; and historical and 
political events. Some changes may cause sharp 
discontinuities such as steps (for example, a change 
in instrument or site), while others may cause grad-
ual biases (for example, increasing urbanization in 
the vicinity of a site). In both cases, the related time 
series become inhomogeneous, and these inhomo-
geneities may affect the proper assessment of 
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climatic trends. Note that site changes do not 
always affect observations of all elements, nor do 
changes affect observations of all elements equally. 
The desirability of a homogeneous record stems 
primarily from the need to distil and identify 
changes in the broader-scale climate. There are 
some studies, however, that may require certain 
“inhomogeneities”  to be reflected in the data, such 
as an investigation of the effects of urbanization on 
local climate or of the effects of vegetation growth 
on the microclimate of an ecosystem.

Statistical tests should be used in conjunction with 
metadata in the investigation of homogeneity. In 
cases in which station history is documented well 
and sufficient parallel measurements have been 
conducted for relocations and changes of instru-
mentation, a homogenization based on this 
qualitative and quantitative information should be 
undertaken. Therefore, the archiving of all histori-
cal metadata is of critical importance for an effective 
homogenization of climatological time series and 
should be of special concern to all meteorological 
services (see Chapters 2 and 3).

After the metadata analysis, statistical tests may 
find additional inhomogeneities. The tests usually 
depend on the timescale of the data; the tests used 
for daily data are different from those used for 
monthly data or other timescales. The results of 
such statistical homogenization procedures then 
have to be checked again with the existing meta-
data. In principle, any statistical test that compares 
a statistical parameter of two data samples may be 
used. But usually, special homogeneity tests that 
check the whole length of a time series in one run 
are used. Both non-parametric tests (in which no 
assumptions about statistical distributions are 
made) and parametric tests (in which frequency 
distribution is known or correctly assumed) can be 
used effectively. 

When choosing a homogeneity test, it is very 
important to keep in mind the shape of the 
frequency distribution of the data. Some datasets 
have a bell-shaped (normal or Gaussian) distribu-
tion; for these a parametric approach works well. 
Others (such as precipitation data from a site with 
marked interannual variability) are not bell- shaped, 
and rank-based non-parametric tests may be better. 
Effects of serial autocorrelation, the number of 
potential change points in a series (documented 
with metadata and undocumented), trends and 
oscillations, and short periods of record that may 
be anomalous should also be considered when 
assessing the confidence that can be placed in the 
results from any test.

Many approaches rely on comparing the data to be 
homogenized (the candidate series) with a reference 

series. A reference time series ideally has to have 
experienced all of the broad climatic influences of 
the candidate, but none of its possible and artificial 
biases. If the candidate is homogeneous, when the 
candidate and reference series are compared by 
differencing (in the case of elements measured on 
an interval scale, like temperature) or by calculating 
ratios or log ratios (for elements measured on a 
proportional scale, like precipitation), the resulting 
time series will show neither sudden changes nor 
trends, but will oscillate around a constant value. If 
there are one or more inhomogeneities, however, 
they will be evident in the difference or ratio time 
series. An example of an observed candidate series 
and a reference series is shown in Figure 5.1, and an 
example of a difference series revealing an 
inhomogeneity in a candidate series is shown in 
Figure 5.2.

Reference time series work well when the dataset 
has a large enough number of values to ensure a 
good climatological relation between each candi-
date and the neighbouring locations used in 
building the reference series, and when there are no 
inhomogeneities that affect all or most of the 
stations or values available. In general, a denser 
network is needed for climatic elements or climatic 
types with a high degree of spatial variability (for 
examples, more data points are needed for precipi-
tation than for temperature, and more data points 
are needed to homogenize precipitation in a highly 
variable temperature climate than in a less variable 
temperature climate). When a change in instru-
ments occurs at about the same time in an entire 
network, the reference series would not be effective 
because all the data points would be similarly 
affected. When a suitable reference series cannot be 
constructed, possible breakpoints and correction 
factors need to be evaluated without using any data 
from neighbouring stations.

The double-mass graph is often used in the field of 
hydrometeorology for the verification of measures 
of precipitation and runoff, but can be used for 
most elements. The accumulated total from the 
candidate series is plotted against the accumulated 
total from the reference series for each available 
period. If the ratio between the candidate and refer-
ence series remains constant over time, the resultant 
double-mass curve should have constant slope. Any 
important variation in the slope or the shape of the 
curve indicates a change in the relationship between 
the two series. Since variations may occur naturally, 
it is recommended that the apparent changes of the 
slope occur for a well-defined continuous period 
lasting at least five years and that they be consistent 
with events referenced in the metadata records of 
the station before concluding inhomogeneity. 
Figure 5.3 shows a double-mass graph for the same 
data used in Figures 5.1 and 5.2. Because it is often 
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over time). One is a runs tests, which hypothesizes 
that trends and other forms of persistence in a 
sequence of observations occur only by chance. It is 
based on the total number of runs of directional 
changes in consecutive values. Too small a number 
of runs indicates persistence or trends, and too large 
a number indicates oscillations. Stationarity of 
central tendencies and variability between parts of a 
series are important. Techniques for examining these 
characteristics include both parametric and non-
parametric methods.

Caution is needed when data are in sub-monthly 
resolution (such as daily or hourly observations) 

difficult to determine where on a double-mass 
graph the slope changes, a residual graph of the 
cumulative differences between the candidate and 
reference station data is usually plotted against 
time (Figure 5.4). The residual graph more clearly 
shows the slope change. The double-mass graph 
can be used to detect more than one change in 
proportionality over time. When the double-mass 
graph reveals a change in the slope, it is possible to 
derive correction factors by computing the ratio of 
the slopes before and after a change point.

There are several tests of stationarity (the hypothesis 
that the characteristics of a time series do not change 

Figure.5 .1 ..Example.of.a.candidate.time.series.(dashed.line).and.a.reference.(solid.line).time.series

Figure.5 .2 ..Example.of.a.difference.time.series
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because one of the uses of homogeneous daily 
data is assessing changes in extremes. Extremes, 
no matter how they are defined, are rare events 
that often have a unique set of weather conditions 
creating them. With few extreme data points avail-
able for the assessment, determining the proper 
homogeneity adjustment for these unique condi-
tions can be difficult. Extremes should be 
considered as part of the whole dataset, and they 
should therefore be homogenized not separately 
but along with all the data. Homogenization tech-
niques for monthly, seasonal or yearly temperature 
data are generally satisfactory, but homogeniza-
tion of daily data and extremes remains a 
challenge.

Although many objective techniques exist for 
detecting and adjusting the data for inhomogenei-
ties, the actual application of these techniques 
remains subjective. At the very least, the decision 
about whether to apply a given technique is 
subjective. This means that independent attempts 
at homogenization may easily result in quite 
different data. It is important to keep detailed and 
complete documentation of each of the steps and 
decisions made during the process. The adjusted 
data should not be considered absolutely “correct”, 
nor should the original data always be considered 
“wrong”. The original data should always be 
preserved.

Homogeneity assessment and data adjustment 
techniques are an area of active development, and 
both the theory and practical tools are continuing 
to evolve. Efforts should be made to keep abreast of 
the latest techniques.

5.2.1	 Evaluation	of	homogenized	data

Evaluation of the results of homogeneity detection 
and adjustment is time-consuming but unavoida-
ble, no matter which approach has been used. It is 
very important to understand which adjustment 
factors have been applied to improve the reliability 
of the time series and to make measurements 
comparable throughout their entire extent. 
Sometimes, one might need to apply a technique 
that has been designed for another set of circum-
stances (such as another climate, meteorological or 
climatological element, or network density), and it 
is important to analyse how well the homogeniza-
tion has performed. For example, most techniques 
used to homogenize monthly or annual precipita-
tion data have been designed and tested in rainy 
climates with precipitation throughout the year, 
and may have serious shortcomings when applied 
to data from climates with very dry seasons.

To assess corrections, one might compare the 
adjusted and unadjusted data to independent infor-
mation, such as data from neighbouring countries, 
gridded datasets, or proxy records such those from 
phenology, observation journals, or ice freeze and 
thaw dates. When using such strategies, one also has 
to be aware of their limitations. For example, grid-
ded datasets might be affected by changes in the 
number of stations across time, or at a particular grid 
point they might not be well correlated with the 
original data from a co-located or nearby station.

Another approach is to examine countrywide, area-
averaged time series for adjusted and unadjusted 
data and to see if the homogenization procedure 

Figure.5 .3 ..Example.of.a.double-mass.graph.with.the.dashed.line.representing.a.slope.of.1
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has modified the trends expected from knowledge 
of the station network. For example, when there 
has been a widespread change from afternoon 
observations to morning observations, the unad-
justed temperature data have a cooling bias in the 
time series, as the morning observations are typi-
cally lower than those in the afternoon. The 
adjusted series accounting for the time of observa-
tion bias, as one might predict, shows more 
warming over time than the unadjusted dataset.

More complete descriptions of several widely used 
tests are available in the Guidelines on Climate 
Metadata and Homogenization (WMO/TD-No. 1186) 
and in several of the references listed at the end of 
this chapter. If the homogenization results are valid, 
the newly adjusted time series as a whole will 
describe the temporal variations of the analysed 
element better than the original data. Some single 
values may remain incorrect or made even worse by 
the homogenization, however.

5.3	 MODEL-FITTING	TO	ASSESS	DATA	
DISTRIBUTIONS

After a dataset is adjusted for known errors and 
inhomogeneities, the observed frequency distribu-
tions should be modelled by the statistical 
distributions described in section 4.4.1 so that 
statistical methods can be exploited. A theoretical 
frequency distribution can be fit to the data by 
inserting estimates of the parameters of the distri-
bution, where the estimates are calculated from the 
sample of observed data. The estimates can be based 
on different amounts of information or data. The 
number of unrelated bits of information or data 

that are used to estimate the parameters of a distri-
bution are called degrees of freedom. Generally, the 
higher the number of degrees of freedom, the better 
the estimate will be. When the smooth theoreti-
cally derived curve is plotted with the data, the 
degree of agreement between the curve fit and the 
data can be visually assessed.

Examination of residuals is a powerful tool for 
understanding the data and suggests what changes 
to a model or data need to be taken. A residual is the 
difference between an observed value and the corre-
sponding model value. A residual is not synonymous 
with an anomalous value. An anomalous value is a 
strange, unusual or unique value in the original 
data series. A graphical presentation of residuals is 
useful for identifying patterns. If residual patterns 
such as oscillations, clusters and trends are noticed, 
then the model used is usually not a good fit to the 
data. Outliers (a few residual values that are very 
different from the majority of the values) are indi-
cators of potentially suspicious or erroneous data 
values. They are usually identified as extremes in 
later analyses. If no patterns exist and if the values 
of the residuals appear to be randomly scattered, 
then the model may be accepted as a good fit to the 
data. 

If an observed frequency distribution is to be fitted 
by a statistical model, the assumptions of the model 
and fitting process must be valid. Most models 
assume that the data are independent (one observa-
tion is unaffected by any other observation). Most 
comparative tests used in goodness-of-fit tests 
assume that errors are randomly and independently 
distributed. If the assumptions are not valid, then 
any conclusions drawn from such an analysis may 
be incorrect.

Figure.5 .4 ..Example.of.a.residual.double-mass.graph
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Once the data have been fitted by an acceptable 
statistical frequency distribution, meeting any 
necessary independence, randomness or other 
sampling criteria, and the fit has been validated (see 
section 4.4), the model can be used as a representa-
tion of the data. Inferences can be made that are 
supported by mathematical theory. The model 
provides estimates of central tendency, variability 
and higher-order properties of the distribution 
(such as skewness or kurtosis). The confidence that 
these sample estimates represent real physical 
conditions can also be determined. Other charac-
teristics, such as the probability of an observation’s 
exceeding a given value, can also be estimated by 
applying both probability and statistical theory to 
the modelled frequency distribution. All of these 
tasks are much harder, if not impossible, when 
using the original data rather than the fitted 
frequency distribution.

5.4	 DATA	TRANSFORMATION

The normal or Gaussian frequency distribution is 
widely used, as it has been studied extensively in 
statistics. If the data do not fit the normal distribu-
tion well, applying a transform to the data may 
result in a frequency distribution that is nearly 
normal, allowing the theory underlying the normal 
distribution to form the basis for many inferential 
uses. Transforming data must be done with care so 
that the transformed data still represent the same 
physical processes as the original data and that 
sound conclusions can be made.

There are several ways to tell whether a distribution of 
an element is substantially non-normal. A visual 
inspection of histograms, scatter plots, or probability–
probability (P–P) or quantile–quantile (Q–Q) plots is 
relatively easy to perform. A more objective assess-
ment can range from simple examination of skewness 
and kurtosis (see section 4.4) to inferential tests of 
normality.

Prior to applying any transformation, an analyst 
must make certain that the non-normality is caused 
by a valid reason. Invalid reasons for non-normal-
ity include mistakes in data entry and missing data 
values not declared missing. Another invalid reason 
for non-normality may be the presence of outliers, 
as they may well be a realistic part of a normal 
distribution.

The most common data transformations utilized 
for improving normality are the square root, cube 
root, logarithmic and inverse transformations. The 
square root makes values less than 1 relatively 
greater, and values greater than 1 relatively smaller. 
If the values can be positive or negative, a constant 

offset must be added before taking the square root 
so that all values are greater than or equal to 0. The 
cube root has a similar effect to the square root, but 
does not require the use of an offset to handle nega-
tive values. Logarithmic transformations compresses 
the range of values, by making small values rela-
tively larger and large values relatively smaller. A 
constant offset must first be added if values equal to 
0 or lower are present. An inverse makes very small 
numbers very large and very large numbers very 
small; values of 0 must be avoided.

These transformations have been described in the 
relative order of power, from weakest to strongest. 
A good guideline is to use the minimum amount of 
transformation necessary to improve normality. If a 
meteorological or climatological element has an 
inherent highly non-normal frequency distribu-
tion, such as the U-shape distribution of cloudiness 
and sunshine, there are no simple transformations 
allowing the normalization of the data.

The transformations all compress the right side of a 
distribution more than the left side; they reduce 
higher values more than lower values. Thus, they 
are effective on positively skewed distributions 
such as precipitation and wind speed. If a distribu-
tion is negatively skewed, it must be reflected 
(values are multiplied by –1, and then a constant is 
added to make all values greater than 0) to reverse 
the distribution prior to applying a transformation, 
and then reflected again to restore the original 
order of the element. 

Data transformations offer many benefits, but they 
should be used appropriately in an informed 
manner. All of the transformations described above 
attempt to improve normality by reducing the rela-
tive spacing of data on the right side of the 
distribution more than the spacing on the left side. 
The very act of altering the relative distances 
between data points, which is how these transfor-
mations aim to improve normality, raises issues in 
the interpretation of the data, however. All data 
points remain in the same relative order as they 
were prior to transformation, which allows inter-
pretation of results in terms of the increasing value 
of the element. The transformed distributions will 
likely become more complex to interpret physi-
cally, however, due to the curvilinear nature of the 
transformations. The analyst must therefore be 
careful when interpreting results based on trans-
formed data.

5.5	 TIME	SERIES	ANALYSIS

The principles guiding model-fitting (see section 
5.3) also guide time series analysis. A model is fitted 
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to the data series; the model might be linear, curvi-
linear, exponential, periodic or some other 
mathematical formulation. The best fit (the fit that 
minimizes the differences between the data series 
and the model) is generally accomplished by using 
least-squares techniques (minimizing the sum of 
squared departures of the data from the curve fit). 
Residuals from the best fit are examined for patterns, 
and if patterns are found, then the model is adjusted 
to incorporate the patterns.

Time series in climatology have been analysed 
mainly with harmonic and spectral analysis tech-
niques that decompose a series into time domain or 
frequency domain components. A critical assump-
tion of these models is that of stationarity 
(characteristics of the series such as mean and vari-
ance do not change over the length of the series). 
This condition is generally not met by climatologi-
cal data even if the data are homogeneous (see 
section 5.2).

Gabor and wavelet analysis are extensions of the 
classical techniques of spectral analysis. By allow-
ing subintervals of a time series to be modelled with 
different scales or resolutions, the condition of 
stationarity is relaxed. These analyses are particu-
larly good at representing time series with 
subintervals that have differing characteristics. 
Wavelet analysis gives good results when the time 
series has spikes or sharp discontinuities. Compared 
to the classical techniques, they are particularly 
efficient for signals in which both the amplitude 
and frequency vary with time. One of the main 
advantages of these “local” analyses is the ability to 
present time series of climate processes in the coor-
dinates of frequency and time, studying and 
visualizing the evolution of various modes of vari-
ability over a long period. They are used not only as 
a tool for identifying non-stationary scales of varia-
tions, but also as a data analysis tool to gain an 
initial understanding of a dataset. There have been 
many applications of these methods in climatol-
ogy, such as in studies of the El Nino–Southern 
Oscillation (ENSO) phenomenon, the North 
Atlantic Oscillation, atmospheric turbulence, 
space–time precipitation relationships and ocean 
wave characteristics.

These methods do have some limitations. The most 
important limitation for wavelet analysis is that an 
infinite number of wavelet functions are available 
as a basis for an analysis, and results often differ 
depending on which wavelet is used. This makes 
interpretation of results somewhat difficult because 
different conclusions can be drawn from the same 
dataset if different mathematical functions are 
used. It is therefore important to relate the wavelet 
function to the physical world prior to selecting a 
specific wavelet. Gabor and wavelet analysis 

techniques are emerging fields, and although the 
mathematics has been defined, future refinements 
in techniques and application methodology may 
mitigate the limitations.

Other common techniques for analysing time series 
are autoregression and moving average analyses. 
Autoregression is a linear regression of a value in a 
time series against one or more prior values in the 
series (autocorrelation). A moving average process 
expresses an observed series as a function of a 
random series. A combination of these two meth-
ods is called a mixed autoregressive and moving 
average (ARMA) model. An ARMA model that 
allows for non-stationarity is called a mixed autore-
gressive integrated moving average (ARIMA) model. 
These regression-based models can be made more 
complex than necessary, resulting in overfitting. 
Overfitting can lead to the modelling of a series of 
values with minimal differences between the model 
and the data values, but since the data values are 
only a sample representation of a physical process, 
a slight lack of fit may be desirable in order to repre-
sent the true process. Other problems include 
non-stationarity of the parameters used to define a 
model, non-random residuals (indicating an 
improper model), and periodicity inherent in the 
data but not modelled. Split validation is effective 
in detecting model overfitting. Split validation 
refers to developing a model based on a portion of 
the available data and then validating the model on 
the remaining data that were not used in the model 
development.

Once the time series data have been modelled by an 
acceptable curve, and the fit validated, the mathe-
matical properties of the model curve can be used 
to make assessments that would not be possible 
using the original data. These include measuring 
trends, cyclical behaviour, or autocorrelation and 
persistence, together with estimates of the confi-
dence of these measures. 

5.6	 MULTIVARIATE	ANALYSIS

Multivariate datasets are a compilation of 
observations of more than one element or a 
compilation of observations of one element at 
different points in space. These datasets are often 
studied for many different purposes. The most 
important purposes are to see if there are simpler 
ways of representing a complex dataset, if 
observations fall into groups and can be classified, 
if the elements fall into groups, and if 
interdependence exists among elements. Such 
datasets are also used to test hypotheses about the 
data. The time order of the observations is generally 
not a consideration; time series of more than one 
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element are usually considered as a separate analysis 
topic with techniques such as cross-spectral 
analysis.

Principal components analysis, sometimes referred 
to as empirical orthogonal functions analysis, is a 
technique for reducing the dimensions of multi-
variate data. The process simplifies a complex 
dataset and has been used extensively in the analy-
sis of climatological data. Principal components 
analysis methods decompose a number of corre-
lated observations into a new set of uncorrelated 
(orthogonal) functions that contain the original 
variance of the data. These empirical orthogonal 
functions, also called principal components, are 
ordered so that the first component is the one 
explaining most of the variance, the second compo-
nent explains the second-largest share of the 
variance, and so on. Since most of the variance is 
usually explained by just a few components, the 
methods are effective in reducing “noise” from an 
observed field. Individual components can often be 
related to a single meteorological or climatological 
element. The method has been used to analyse a 
diversity of fields that include sea surface tempera-
tures, regional land temperature and precipitation 
patterns, tree-ring chronologies, sea level pressure, 
air pollutants, radiative properties of the atmos-
phere, and climate scenarios. Principal components 
have also been used as a climate reconstruction 
tool, such as in estimating a spatial grid of a climatic 
element from proxy data when actual observations 
of the element are not available.

Factor analysis reduces a dataset from a larger set of 
observations to a smaller set of factors. In the mete-
orological and climatological literature, factor 
analysis is often called rotated principal compo-
nents analysis. It is similar to principal components 
analysis except that the factors are not uncorre-
lated. Since a factor may represent observations 
from more than one element, meteorological or 
climatological interpretation of a factor is often 
difficult. The method has been used mainly in 
synoptic climatology studies.

Cluster analysis attempts to separate observations 
into groups with similar characteristics. There are 
many methods for clustering, and different meth-
ods are used to detect different patterns of points. 
Most of the methods, however, rely on the extent 
to which the distance between means of two groups 
is greater than the mean distance within a group. 
The measure of distance does not need to be the 
usual Euclidean distance, but it should obey certain 
criteria. One such criterion should be that the meas-
ure of distance from point A to point B is equal to 
the distance from point B to point A (symmetry). A 
second criterion is that the distance should be a 
positive value (non-negativity). A third criterion is 

that for three points forming a triangle, the length 
of one side should be less than or equal to the sum 
of the lengths of the other two sides (triangle 
inequality). A fourth criterion should be that if the 
distance from A to B is zero, then A and B are the 
same (definiteness). Most techniques iteratively 
separate the data into more and more clusters, 
thereby presenting the problem for the analyst of 
determining when the number of clusters is suffi-
cient. Unfortunately, there are no objective rules 
for making this decision. The analyst should there-
fore use prior knowledge and experience in deciding 
when a meteorologically or climatologically appro-
priate number of clusters has been obtained. Cluster 
analysis has been used for diverse purposes, such as 
constructing homogeneous regions of precipita-
tion, analysing synoptic climatologies, and 
predicting air quality in an urban environment. 

Canonical correlation analysis seeks to determine 
the interdependence between two groups of 
elements. The method finds the linear combination 
of the distribution of the first element that produces 
the correlation with the second distribution. This 
linear combination is extracted from the dataset 
and the process is repeated with the residual data, 
with the constraint that the second linear combina-
tion is not correlated with the first combination. 
The process is again repeated until a linear combi-
nation is no longer significant. This analysis is used, 
for example, in making predictions from telecon-
nections, in statistical downscaling (see section 
6.7.3), in determining homogeneous regions for 
flood forecasting in an ungauged basin, and in 
reconstructing spatial wind patterns from pressure 
fields.

These methods all have assumptions and limita-
tions. The interpretation of the results is very much 
dependent on the assumptions being met and on 
the experience of the analyst. Other methods, such 
as multiple regression and covariance analysis, are 
even more restrictive for most meteorological or 
climatological data. Multivariate analysis is 
complex, with numerous possible outcomes, and 
requires care in its application. 

5.7	 COMPARATIVE	ANALYSIS

By fitting a model function to the data, be it a 
frequency distribution or a time series, it is possible 
to use the characteristics of that model for further 
analysis. The properties of the model characteristics 
are generally well studied, allowing a range of 
conclusions to be drawn. If the characteristics are 
not well studied, bootstrapping may be useful. 
Bootstrapping is the estimation of model character-
istics from multiple random samples drawn from 
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the original observational series. It is an alternative 
to making inferences from parameter-based 
assumptions when the assumptions are in doubt, 
when parametric inference is impossible, or when 
parametric inference requires very complicated 
formulas. Bootstrapping is simple to apply, but it 
may conceal its own set of assumptions that would 
be more formally stated in other approaches. 

In particular, there are many tests available for 
comparing the characteristics of two models to 
determine how much confidence can be placed in 
claims that the two sets of modelled data share 
underlying characteristics. When comparing two 
models, the first step is to decide which characteris-
tics are to be compared. These could include the 
mean, median, variance or probability of an event 
from a distribution, or the phase or frequency from 
a time series. In principle, any computable charac-
teristic of the fitted models can be compared, 
although there should be some meaningful reason 
(based on physical arguments) to do so. 

The next step is to formulate the null hypothesis. 
This is the hypothesis considered to be true before 
any testing is done, and in this case it is usually that 
the modelled characteristics are the same. The alter-
native hypothesis is the obverse, that the modelled 
characteristics are not the same.

A suitable test to compare the characteristics from the 
two models is then selected. Some of these tests are 
parametric, depending on assumptions about the 
distribution, such as normality. Parametric tests 
include the Student’s t-test (for comparing means) 
and the Fisher’s F-test (for comparing variability). 
Other tests are non-parametric, so they do not make 
assumptions about the distribution. They include 
sign tests (for comparing medians) and the 
Kolmogorov-Smirnov test for comparing distribu-
tions. Parametric tests are generally better (in terms of 
confidence in the conclusions), but only if the 
required assumptions about the distribution are valid.

The seriousness of rejecting a true hypothesis (or 
accepting a false one) is expressed as a level of confi-
dence or probability. The selected test will show 
whether the null hypothesis can be accepted at the 
level of confidence required. Some of the tests will 
reveal at what level of confidence the null hypoth-
esis can be accepted. If the null hypothesis is 
rejected, the alternative hypothesis must be 
accepted. Using this process, the analyst might be 
able to make the claim, for example, that the means 
of two sets of observations are equal with a 99 per 
cent level of confidence; accordingly, there is only a 
1 per cent chance that the means are not the same.

Regardless of which hypothesis is accepted, the null 
or the alternative, the conclusion may be erroneous. 

When the null hypothesis is rejected but it is 
actually true, a Type I error has been made. When 
the null hypothesis is accepted and it is actually 
false, a Type II error has been made. Unfortunately, 
reducing the risk of a Type I error increases the risk 
of making a Type II error, so that a balance between 
the two types is necessary. This balance should be 
based on the seriousness of making either type of 
error. In any case, the confidence of the conclusion 
can be calculated in terms of probability and should 
be reported with the conclusion.

5.8	 SMOOTHING

Smoothing methods provide a bridge between 
making no assumptions based on a formal structure 
of observed data (the non-parametric approach) 
and making very strong assumptions (the paramet-
ric approach). Making a weak assumption that the 
true distribution of the data can be represented by a 
smooth curve allows underlying patterns in the 
data to be revealed to the analyst. Smoothing 
increases signals of climatic patterns while reducing 
noise induced by random fluctuations. The applica-
tions of smoothing include exploratory data 
analysis, model-building, goodness-of-fit of a repre-
sentative (smooth) curve to the data, parametric 
estimation, and modification of standard 
methodology.

Kernel density estimation is one method of smooth-
ing; examples include moving averages, Gaussian 
smoothing and binomial smoothing. Kernel 
smoothers estimate the value at a point by combin-
ing the observed values in a neighbourhood of that 
point. The method of combination is often a 
weighted mean, with weights dependent on the 
distance from the point in question. The size of the 
neighbourhood used is called the bandwidth; the 
larger the bandwidth, the greater the smoothing. 
Kernel estimators are simple, but they have draw-
backs. Kernel estimation can be biased when the 
region of definition of the data is bounded, such as 
near the beginning or end of a time series. As one 
bandwidth is used for the entire curve, a constant 
level of smoothing is applied. Also, the estimation 
tends to flatten peaks and valleys in the distribu-
tion of the data. Improvements to kernel estimation 
include correcting the boundary biases by using 
special kernels only near the boundaries, and by 
varying the bandwidths in different sections of the 
data distribution. Data transformations (see section 
5.4) may also improve the estimation. 

Spline estimators fit a frequency distribution piece-
wise over subintervals of the distribution with 
polynomials of varying degree. Again, the number 
and placement of the subintervals affects the degree 
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of smoothing. Estimation near the boundaries of 
the data is problematic as well. Outliers can severely 
affect a spline fit, especially in regions with few 
observations.

A range of more sophisticated, often non-paramet-
ric smoothers, are also available. These include 
local maximum likelihood estimation, which is 
particularly useful when prior knowledge of the 
behaviour of the dataset can lead to a good “first 
guess” of the type of curve that should be fitted. 
These estimators are sometimes difficult to inter-
pret theoretically.

With multivariate data, smoothing is more complex 
because of the number of possibilities of smoothing 
and the number of smoothing parameters that need 
to be set. As the number of data elements increases, 
smoothing becomes progressively more difficult. 
Most graphs are limited to only two dimensions, so 
visual inspection of the smoother is limited. Kernel 
density can be used to smooth multivariate data, 
but the problems of boundary estimation and fixed 
bandwidths can be even more challenging than 
with univariate data.

Large empty regions in a multivariate space usually 
exist unless the number of data values is very large. 
Collapsing the data to a smaller number of dimen-
sions with, for example, principal components 
analysis, is a smoothing technique. The dimension 
reduction should have the goal of preserving any 
interesting structure or signal in the data  in the 
lower-dimension data while removing uninterest-
ing attributes or noise.

One of the most widely used smoothing tools is 
regression. Regression models, both linear and non-
linear, are powerful for modelling a target element 
as a function of a set of predictors, allowing for a 
description of relationships and the construction of 
tests of the strength of the relationships. These 
models are susceptible, however, to the same prob-
lems as any other parametric model in that the 
assumptions made affect the validity of inferences 
and predictions.

Regression models also suffer from boundary 
problems and unrealistic smoothing in subintervals 
of the data range. These problems can be solved by 
weighting subintervals of the data domain with 
varying bandwidths and by applying polynomial 
estimation near the boundaries. Regression estimates, 
which are based on least-squares estimation, can be 
affected by observations with unusual response 
values (outliers). If a data value is far from the 
majority of the values, the smooth curve will be tend 
to be drawn closer to the aberrant value than may be 
justified. When using adjusted non-parametric 
smoothing, it is often difficult to unambiguously 

identify a value as an outlier because the intent is to 
smooth all the observations. Outliers could be a 
valid meteorological or climatological response, or 
they could be aberrant; additional investigation of 
the outlier is necessary to ensure the validity of the 
value. Regression estimates are also affected by 
correlation. Estimates are based on the assumption 
that all errors are statistically independent of each 
other; correlation can affect the asymptotic 
properties of the estimators and the behaviour of the 
bandwidths determined from the data.

5.9	 ESTIMATING	DATA

One of the main applications of statistics to clima-
tology is the estimation of values of elements when 
few or no observed data are available or when 
expected data are missing. In many cases, the plan-
ning and execution of user projects cannot be 
delayed until there are enough meteorological or 
climatological observations; estimation is used to 
extend a dataset. Estimation also has a role in qual-
ity control by allowing an observed value to be 
compared to its neighbours in both time and space. 
Techniques for estimating data are essentially appli-
cations of statistics, but should also rely on the 
physical properties of the system being considered. 
In all cases, it is essential that values statistically 
estimated be realistic and consistent with physical 
considerations.

Interpolation uses data that are available both 
before and after a missing value (time interpola-
tion), or surrounding the missing value (space 
interpolation), to estimate the missing value. In 
some cases, the estimation of a missing value can 
be performed by a simple process, such as by 
computing the average of the values observed on 
both sides of the gap. Complex estimation methods 
are also used, taking into account correlations with 
other elements. These methods include weighted 
averages, spline functions, linear regressions and 
kriging. They may rely solely on the observations of 
an element, or take into account other information 
such as topography or numerical model output. 
Spline functions can be used when the spatial vari-
ations are regular. Linear regression allows the 
inclusion of many kinds of information. Kriging is 
a geostatistical method that requires an estimation 
of the covariances of the studied field. Cokriging 
introduces into kriging equations the information 
given by another independent element.

Extrapolation extends the range of available data 
values. There are more possibilities for error of 
extrapolated values because relations are used 
outside the domain of the values from which the 
relationships were derived. Even if empirical 
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relations found for a given place or period of time 
seem reasonable, care must be taken when applying 
them to another place or time because the 
underlying physics at one place and time may not 
be the same as at another place and time. The same 
methods used for interpolation can be used for 
extrapolation.

5.9.1	 Mathematical	estimation	methods

Mathematical methods involve the use of only 
geometric or polynomial characteristics of a set of 
point values to create a continuous surface. Inverse 
distance weighting and curve fitting methods, such 
as spline functions, are examples. The methods are 
exact interpolators; observed values are retained at 
sites where they are measured.

Inverse distance weighting is based on the distance 
between the location for which a value is to be 
interpolated and the locations of observations. 
Unlike the simple nearest neighbours method 
(where the observation from the nearest location is 
chosen), inverse distance weighting combines 
observations from a number of neighbouring loca-
tions. Weights are given to the observations 
depending on their distance from the target loca-
tion; close stations have a larger weight than those 
farther away. A “cut-off” criterion is often used, 
either to limit the distance to observation locations 
or the number of observations considered. Often, 
inverse squared distance weighting is used to 
provide even more weight to the closest locations. 
With this method no physical reasoning is used; it 
is assumed that the closer an observation location 
is to the location where the data are being esti-
mated, the better the estimation. This assumption 
should be carefully validated since there may be no 
inherent meteorological or climatological reason to 
justify the assumption.

Spline fits suffer from the same limitation as inverse 
distance weighting. The field resulting from a spline 
fit assumes that the physical processes can be repre-
sented by the mathematical spline; there is rarely 
any inherent justification to this assumption. Both 
methods work best on smooth surfaces, so they 
may not result in adequate representations on 
surfaces that have marked fluctuations.

5.9.2	 Estimation	based	on	physical	
relationships

The physical consistency that exists among differ-
ent elements can be used for estimation. For 
instance, if some global radiation measurements 
are missing and need to be estimated, elements 
such as sunshine duration and cloudiness could be 
used to estimate a missing value. Proxy data may 
also be used as supporting information for  

estimation. When simultaneous values at two 
stations close to each other are compared, some-
times either the difference or the quotient of the 
values is approximately constant. This is more 
often true for summarized data (for months or 
years) than for those over shorter time intervals 
(such as daily data). The constant difference or 
ratio can be used to estimate data. When using 
these methods, the series being compared should 
be sufficiently correlated for the comparison to be 
meaningful. Then, the choice of the method 
should depend on the time structure of the two 
series. The difference method can be used when 
the variations of the meteorological or climato-
logical element are relatively similar from one 
station to the other. The ratio method can be 
applied when the time variations of the two series 
are not similar, but nevertheless proportional (this 
is usually the case when a series has a lower bound 
of zero, as with precipitation or wind speed, for 
example). In the event that those assumptions are 
not fulfilled, particularly when the variances of 
the series at the two stations are not equal for the 
method  using the differences, these techniques 
should not be used. More complex physical 
consistency tools include regression, discriminant 
analysis (for the occurrence of phenomena) and 
principal components analysis.

Deterministic methods are based upon a known 
relation between an in situ data value (predictand) 
and values of other elements (predictors). This rela-
tion is often based on empirical knowledge about 
the predictand and the predictor. The empirical 
relation can be found by either physical or statisti-
cal analysis, and is frequently a combination in 
which a statistical relation is derived from values 
based on the knowledge of a physical process. 
Statistical methods such as regression are often 
used to establish such relations. The deterministic 
approach is stationary in time and space and must 
therefore be regarded as a global method reflecting 
the properties of the entire sample. The predictors 
may be other observed elements or other geographic 
parameters, such as elevation, slope or distance 
from the sea.

5.9.3	 Spatial	estimation	methods

Spatial interpolation is a procedure for estimating 
the value of properties at unsampled sites within 
an area covered by existing observations. The 
rationale behind interpolation is that observation 
sites that are close together in space are more likely 
to have similar values than sites that are far apart 
(spatial coherency). All spatial interpolation 
methods are based on theoretical considerations, 
assumptions and conditions that must be fulfilled 
in order for a method to be used properly. 
Therefore, when selecting a spatial interpolation 
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algorithm, the purpose of the interpolation, the 
characteristics of the phenomenon to be 
interpolated, and the constraints of the method 
have to be considered.

Stochastic methods for spatial interpolation are 
often referred to as geostatistical methods. A 
feature shared by these methods is that they use a 
spatial relationship function to describe the corre-
lation among values at different sites as a function 
of distance. The interpolation itself is closely 
related to regression. These methods demand that 
certain statistical assumptions be fulfilled, for 
example: the process follows a normal distribu-
tion, it is stationary in space, or it is constant in all 
directions.

Even though it is not significantly better than 
other techniques, kriging is a spatial interpolation 
approach that has been used often for interpolat-
ing elements such as air and soil temperature, 
precipitation, air pollutants, solar radiation, and 
winds. The basis of the technique is the rate at 
which the variance between points changes over 
space and is expressed in a variogram. A variogram 
shows how the average difference between values 
at points changes with distance and direction 
between points. When developing a variogram, it 
is necessary to make some assumptions about the 
nature of the observed variation on the surface. 
Some of these assumptions concern the constancy 
of means over the entire surface, the existence of 
underlying trends, and the randomness and inde-
pendence of variations. The goal is to relate all 
variations to distance. Relationships between a 
variogram and physical processes may be accom-
modated by choosing an appropriate variogram 
model (for example, spherical, exponential, 
Gaussian or linear).

Some of the problems with kriging are the compu-
tational intensity for large datasets, the complexity 
of estimating a variogram, and the critical assump-
tions that must be made about the statistical nature 
of the variation. This last problem is most impor-
tant. Although many variants of kriging allow 
flexibility, the method was developed initially for 
applications in which distances between observa-
tion sites are small. In the case of climatological 
data, the distances between sites are usually large, 
and the assumption of smoothly varying fields 
between sites is often not realistic.

Since meteorological or climatological fields such 
as precipitation are strongly influenced by topog-
raphy, some methods, such as Analysis Using 
Relief for HYdrometeorology (AURELHY) and 
Parameter-elevation Regressions on Independent 
Slopes Model (PRISM), incorporate the topogra-
phy into an interpolation of climatic data by 

combining principal components analysis, linear 
multiple regression and kriging. Depending on the 
method used, topography is described by the 
elevation, slope and slope direction, generally 
averaged over an area. The topographic character-
istics are generally at a finer spatial resolution than 
the climate data. 

Among the most advanced physically based methods 
are those that incorporate a description of the dynam-
ics of the climate system. Similar models are routinely 
used in weather forecasting and climate modelling 
(see section 6.7). As the computer power and storage 
capacity they require becomes more readily available, 
these models are being used more widely in climate 
monitoring, and especially to estimate the value of 
climate elements in areas remote from actual observa-
tions (see section 5.13 on reanalysis).

5.9.4	 Time	series	estimation

Time series often have missing data that need to be 
estimated or values that must be estimated at time-
scales that are finer than those provided by the 
observations. One or just a few observations can be 
estimated better than a long period of continuous 
missing observations. As a general rule, the longer 
the period to be estimated, the less confidence one 
can place in the estimates.

For single-station analysis, one or two consecutive 
missing values are generally estimated by simple 
linear, polynomial or spline approximations that 
are fitted from the observations just before and 
after the period to be estimated. The assumption is 
that conditions within the period to be estimated 
are similar to those just before and after the period 
to be estimated; care must be taken that this 
assumption is valid. An example of a violation of 
this assumption in the estimation of hourly temper-
atures is the passage of a strong cold front during 
the period to be estimated. Estimation of values for 
longer periods is usually accomplished with time 
series analysis techniques (see section 5.5) 
performed on parts of the series without data gaps. 
The model for the values that do exist is then 
applied to the gaps. As with spatial interpolation, 
temporal interpolation should be validated to 
ensure that the estimated values are reasonable. 
Metadata or other corollary information about the 
time series is useful for determining the 
reasonableness.

5.9.5	 Validation

Any estimation is based on some underlying 
structure or physical reasoning. It is therefore 
very important to verify that the assumptions 
made in applying the estimation model are 
fulfilled. If they are not fulfilled, the estimated 
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values may be in error. Furthermore, the error 
could be serious and lead to incorrect conclu-
sions. In climatological analysis, model 
assumptions often are not met. For example, in 
spatial analysis, interpolating between widely 
spaced stations implies that the climatological 
patterns between stations are known and can be 
modelled. In reality, many factors (such as topog-
raphy, local peculiarities or the existence of water 
bodies) influence the climate of a region. Unless 
these factors are adequately incorporated into a 
spatial model, the interpolated values will likely 
be in error. In temporal analysis, interpolating 
over a large data gap implies that the values repre-
senting conditions before and after the gap can 
be used to estimate the values within the gap. In 
reality, the more variable the weather patterns are 
at a location, the less likely that this assumption 
will hold, and consequently the interpolated 
values could be in error.

The seriousness of any error of interpolation is 
related to the use of the data. Conclusions and 
judgments based on requirements for microscale, 
detailed information about a local area will be 
much more affected by errors than those that are 
based on macroscale, general information for a 
large area. When estimating data, the sensitivity of 
the results to the use of the data should be consid-
ered carefully.

Validation is essential whenever spatial interpola-
tion is performed. Split validation is a simple and 
effective technique. A large part of a dataset is used 
to develop the estimation procedures and a single, 
smaller subset of the dataset is reserved for testing 
the methodology. The data in the smaller subset 
are estimated with the procedures developed from 
the larger portion, and the estimated values are 
compared with the observed values. Cross-
validation is another simple and effective tool to 
compare various assumptions either about the 
models (such as the type of variogram and its 
parameters, or the size of a kriging neighbour-
hood) or about the data, using only the information 
available in the given sample dataset. Cross-
validation is carried out by removing one 
observation from the data sample, and then esti-
mating the removed value based on the remaining 
observations. This is repeated with the removal of 
a different observation from the sample, and 
repeated again, removing each observation in 
turn. The residuals between the observed and esti-
mated values can then be further analysed 
statistically or can be mapped for visual inspec-
tion. Cross-validation offers quantitative insights 
into how any estimation method performs. An 
analysis of the spatial arrangement of the residuals 
often suggests further improvements of the esti-
mation model.

5.10	 EXTREME	VALUE	ANALYSIS

Many practical problems in climatology require 
knowledge of the behaviour of extreme values of 
some climatological elements. This is particularly 
true for the engineering design of structures that 
are sensitive to high or low values of meteorologi-
cal or climatological phenomena. For example, 
high precipitation amounts and resulting stream-
flows affect sewerage systems, dams, reservoirs and 
bridges. High wind speed increases the load on 
buildings, bridges, cranes, trees and electrical 
power lines. Large snowfalls require that roofs be 
built to withstand the added weight. Public author-
ities and insurers may want to define thresholds 
beyond which damages resulting from extreme 
conditions become eligible for economic relief.

Design criteria are often expressed in terms of a 
return period, which is the mean interval of time 
between two occurrences of values equal to or 
greater than a given value. The return period 
concept is used to avoid adopting high safety coef-
ficients that are very costly, but also to prevent 
major damage to equipment and structures from 
extreme events that are likely to occur during the 
useful life of the equipment or structures. As such 
equipment can last for years or even centuries, 
accurate estimation of return periods can be a criti-
cal factor in their design. Design criteria may also 
be described by the number of expected occur-
rences of events exceeding a fixed threshold.

5.10.1	 Return	period	approach

Classical approaches to extreme value analysis 
represent the behaviour of the sample of extremes 
by a probability distribution that fits the observed 
distribution sufficiently well. The extreme value 
distributions have assumptions such as stationarity 
and independence of data values, as discussed in 
Chapter 4. The three common extreme value distri-
butions are Gumbel, Frechet and Weibull. The 
generalized extreme value (GEV) distribution 
combines these three under a single formulation, 
which is characterized by a model shape 
parameter.

The data that are fitted by an extreme value distri-
bution model are the maxima (or minima) of 
values observed in a specified time interval. For 
example, if daily temperatures are observed over a 
period of many years, the set of annual maxima 
could be represented by an extreme value distribu-
tion. Constructing and adequately representing a 
set of maxima or minima from subintervals of the 
whole dataset requires that the dataset be large, 
which may be a strong limitation if the data sample 
covers a limited period. An alternative is to select 
values beyond a given threshold. The generalized 
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Pareto frequency distribution is usually suitable for 
fitting data beyond a threshold.

Once a distribution is fitted to an extreme value 
dataset, return periods are computed. A return 
period is the mean frequency with which a value is 
expected to be equalled or exceeded (such as once 
in 20 years). Although lengthy return periods for 
the occurrence of a value can be mathematically 
calculated, the confidence that can be placed in the 
results may be minimal. As a general rule, confi-
dence in a return period decreases rapidly when the 
period is more than about twice the length of the 
original dataset.

Extreme climate events can have significant impacts 
on both natural and man-made systems, and there-
fore it is important to know if and how climate 
extremes are changing. Some types of infrastructure 
currently have little margin to buffer the impacts of 
climate change. For example, there are many 
communities in low-lying coastal zones through-
out the world that are at risk from rising sea levels. 
Adaptation strategies to non-stationary climate 
extremes should account for the decadal-scale 
changes in climate observed in the recent past, as 
well as for future changes projected by climate 
models. Newer statistical models, such as the non-
stationary generalized extreme value, have been 
developed to try to overcome some of the limita-
tions of the more conventional distributions. As 
models continue to evolve and as their properties 
become better understood, they will likely replace 
the more common approaches to analysing 
extremes. The Guidelines on Analysis of Extremes in a 
Changing Climate in Support of Informed Decisions for 
Adaptation (WMO/TD-No. 1500) is a publication 
that provides more insight into how one should 
account for a changing climate when assessing and 
estimating extremes.

5.10.2	 Probable	maximum	precipitation

The probable maximum precipitation is defined as 
the theoretically greatest depth of precipitation for 
a given duration that is physically possible over a 
storm area of a given size under particular geograph-
ical conditions at a specified time of the year. It is 
widely used in the design of dams and other large 
hydraulic systems, for which a very rare event could 
have disastrous consequences.

The estimation of probable maximum precipitation 
is generally based on heuristic approaches, includ-
ing the following steps:

(a)  Use of a conceptual storm model to represent 
precipitation processes in terms of physical 
elements such as surface dewpoint, depth of 
storm cell, inflow and outflow;

(b)  Calibration of the model using observations 
of storm depth and accompanying atmos-
pheric moisture;

(c)  Use of the calibrated model to estimate what 
would have occurred with maximum observed 
atmospheric moisture;

(d)  Translation of the observed storm character-
istics from gauged locations to the location 
where the estimate is required, adjusting for 
effects of topography, continentality, and 
similar non-meteorological or non-climato-
logical conditions.

5.11	 ROBUST	STATISTICS

Robust statistics produce estimators that are not 
unduly affected by small departures from model 
assumptions. Statistical inferences are based on 
observations as well as the assumptions of the 
underlying models (such as randomness, independ-
ence and model fit). Climatological data often 
violate many of these assumptions because of the 
temporal and spatial dependence of observations, 
data inhomogeneities, data errors and other factors.

The effect of assumptions on the results of analyses 
should be determined quantitatively if possible, but 
at least qualitatively, in an assessment of the valid-
ity of conclusions. The purpose of an analysis is also 
important. General conclusions based on large 
temporal or spatial scale processes with a lot of 
averaging and on a large dataset are often less sensi-
tive to deviations from assumptions than more 
specific conclusions. Robust statistical approaches 
are often used for regression.

If results are sensitive to violations of assumptions, 
the analyst should include this fact when dissemi-
nating the results to users. It may be also be possible 
to analyse the data using other methods that are 
not as sensitive to deviations from assumptions, or 
that do not make any assumptions about the 
factors causing the sensitivity problems. Since 
parametric methods assume more conditions than 
non-parametric methods, it may be possible to 
reanalyse the data with non-parametric tech-
niques. For example, using the median and 
interquartile range instead of the mean and stand-
ard deviation decreases sensitivity to outliers or to 
gross errors in the observational data.

5.12	 STATISTICAL	PACKAGES

Since most climatological processing and analyses 
are based on universal statistical methods, universal 
statistical packages are convenient computer 
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software instruments for the climatologists. Several 
software products for universal statistical analysis 
are available on a variety of computer platforms.

Statistical packages offer numerous data manage-
ment, analytical and reporting tools. A chosen 
package should have all the capabilities required to 
manage, process and analyse data, but not be 
burdened with unnecessary tools that lead to inef-
ficiencies. Some of the basic tools are often included 
in a Climate Data Management System (see  
section 3.3). 

Basic data management tools provide a wide variety 
of operations with which to make the data conven-
ient for processing and analysis. These operations 
include sorting, adding data, subsetting data, trans-
posing matrices, arithmetic calculations, and 
merging data. Basic statistical processing tools 
include the calculation of sample descriptive statis-
tics, correlations, frequency tables and hypothesis 
testing. Analytical tools usually cover many of the 
needs of climate analysis, such as analysis of vari-
ance, regression analysis, discriminant analysis, 
cluster analysis, multidimensional analysis and 
time series analysis. Calculated results of analyses 
are usually put into resultant datasets and can 
usually be saved, exported and transformed, and 
thus used for any further analysis and processing.

The graphical tools contained in statistical packages 
include the creation of two- and three-dimensional 
graphs, the capability to edit the graphs, and the 
capability to save the graphs in specific formats of 
the statistical packages or in standard graphical 
formats. Most packages can create scatter plots (two- 
and three-dimensional); bubble plots; line, step and 
interpolated (smoothed) plots; vertical, horizontal 
and pie charts; box and whisker plots; and three-
dimensional surface plots, including contouring of 
the surface. Some packages contain the tools for 
displaying values of some element on a map, but 
they should not be considered a replacement for a 
Geographical Information System (GIS). A 
Geographical Information System integrates hard-
ware, software and data for capturing, managing, 
analysing and displaying all forms of geographically 
referenced information. Some GIS programs include 
geographical interpolation capabilities such as 
cokriging and geographically weighted regression 
tools. 

Interactive analysis tools combine the power of statis-
tical analysis and the ability to visually manage the 
conditions for any particular statistical analysis. Tools 
allow the visual selection of values to be included in 
or excluded from analyses, and recalculation based 
upon these selections. This flexibility is useful, for 
example, in trend calculations when climate data 
series contain outliers and other suspicious points. 

These points can be interactively excluded from anal-
ysis based on a graph of the series, and trend statistics 
can be recalculated automatically. Options are usually 
available for analysing and displaying subgroups of 
data.

5.13	 DATA	MINING

Data mining is an analytic process designed to 
explore large amounts of data in search of consist-
ent patterns or systematic relationships among 
elements, and then to validate the findings by 
applying the detected patterns to new subsets of 
data. It is often considered a blend of statistics, arti-
ficial intelligence and database research. It is rapidly 
developing into a major field, and important theo-
retical and practical advances are being made. Data 
mining is fully applicable to climatological prob-
lems when the volume of data available is large, 
and ways to search the significant relationships 
among climate elements may not be evident, espe-
cially at the early stages of analysis.

Data mining is similar to exploratory data analy-
sis, which is also oriented towards the search for 
relationships among elements in situations when 
possible relationships are not clear. Data mining is 
not concerned with identifying the specific rela-
tions among the elements involved. Instead, the 
focus is on producing a solution that can generate 
useful predictions. Data mining takes a “black 
box” approach to data exploration or knowledge 
discovery and uses not only the traditional explor-
atory data analysis techniques, but also such 
techniques as neural networks, which can gener-
ate valid predictions but are not capable of 
identifying the specific nature of the interrelations 
among the elements on which the predictions are 
based.
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