

Infiltration and Runoff

Prof. Dr. Christoph Külls, Hydrology and International Water Management

HyWa

Content

- 1. Introduction
- 2. Relevance in Hydrology
 - Runoff Generation
 - Recharge
- 3. Formula
- 4. Runoff
- 5. Summary

Objectives

Understand Infiltration Processes

- Fundamental soil physics
- Know most important formulae
- Know measurement techniques
- Understand relevance for hydrology
- Be able to apply infiltration models

Infiltration Switch in Flowpaths

Infiltration is an important switch in hydrological flow paths, dividing precipitation into surface flows and subsurface flows.

$$Q_s = P - I \,[\mathrm{mm}]$$

mit Q_s = surface runoff in mm, *P* Precipitation, *I* Infiltration in mm.

Infiltration and runoff

Tarboton, 2003

Infiltration and runoff

Tarboton, 2003

- Infiltration rate decreases
- Approaches constant value

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Infiltration and runoff

Infiltration capacity of soil = 2 cm/hr

Dunne & Leopold, 1997

P > *I* infiltration and runoff *P* <= *I* infiltration, no runoff

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Infiltration and runoff

(c)

Bras, cited in Tarboton, 2003

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Infiltration and runoff

- Infiltration saturates soil
- Saturated soil produces runoff
- Floodplain turns into runoff producing area

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Infiltration and runoff

- Saturated area near rivers
- Runoff producing areas
- High correlation of moisture with runoff coefficient

Infiltration and runoff

Relationship between runoff ratio and soil moisture content (Woods et al., 2001, Copyright, 2001, American Geophysical Union, reproduced by permission of American Geophysical Union).

Tarboton, 2003

Transmission losses

Flood wave advancing over a dry streambed in Walnut Gulch experimental watershed where channel transmission losses are considerable (Courtesy of David Goodrich, USDA-ARS).

Goodrich, USDA cited in Tarboton, 2003

Infiltration models

Formula

Infiltration and Drainage

Kostiakov Infiltration Equation

Kostiakov (1932) and Lewis (1938) proposed an empirical infiltration equation based on curve fitting from field data:

$$f_{\rho} = K_k * t^{-\alpha}$$

with	f_p	infiltration	[L/T]
	K _k	infiltration capacity	[<i>L</i>]
	α	constant	[—]
	t	time since infiltration	[T]

Problems: converges to 0 with $t \to \infty$. This flaw can be compensated by introducing an extra term $+f_{fin}$ as the final infiltration rate.

7 Smith & Parlange Infiltration Equation

Smith & Parlange developed an infiltration formula for variable rainfall rates:

$$i_s = K_s * \left[1 + \frac{\alpha}{exp(\alpha * F/B) - 1} \right]$$

with	i _s	infiltration rate	[L/T]
	K_s	conductivity	[L]
	α	constant	[—]
	F	Infiltration amount	[L]
	В	parameter	[<i>L</i>]

Haverkamp Infiltration Equation

Haverkamp et al. (1994) proposed for infiltration :

$$I_{3D} = S_0 * t^{1/2} + \left[K_n + \frac{\gamma * S_0^2}{r_d * (\theta_0 - \theta_n)} + \frac{1}{3} * (K_0 - K_n) * (2 - \beta) \right] * t$$

- with I_{3D} infiltration amount
 - S₀ sorptivity
 - K_n conductivity at current moisture θ_n
 - K_0 conductivity at initial moisture θ_0
 - β shape parameter
 - γ parameter
 - *r*_d disc diameter

Formula

Philip Infiltration Formula Infiltration Amount

Philip wrote a famous paper on the theory of infiltration in 1969: Philip J R. Theory of infiltration. Advan. Hydrosci. 5:215-96, 1969. [Division of Plant Industry, CSIRO, Canberra, Australia]

$$I = S * \sqrt{t} + a * t$$

- with *I* infiltration amount
 - S sorptivity
 - *a* hydraulic conductivity
 - t time

[*mm*] [*mm/h^{-0.5}*] [*mm/h*] [*hours*]

R program

The infiltration formula can be plotted using an R program.

1: S <- 30 # mm 2: a <- 8 # mm/hour 3: t <- seq(0,0.5,by=1/60.0) 4: I <- S*t^(0.5)+a*t 5: plot(t,I) Formula

R program of infiltration amount (Philip)

- example with S=30 mm, a=10 m/hour
- low, infiltration rate, high sorption (red)
- high infiltration rate, low sorption (blue)

Formula

Philip Infiltration Formula Infiltration rate

The infiltration rate *i* in *mm* per time can be derived from the derivation of the Philip formula for infiltration amount (or vice vs. amount by integration of rate):

$$i = \frac{1}{2} * S * t^{-0.5} + a$$

- with *i* infiltration rate
 - S sorptivity
 - *a* hydraulic conductivity
 - t time

[*mm/h*] [*mm/h*^{-0.5}] [*mm/h*] [*h*]

R program

The infiltration rate formula can be plotted using an R program.

1: S <- 30 # mm 2: a <- 8 # mm/hour 3: t <- seq(0,1,by=1/60.0) 4: i <- 0.5*S*t^(-0.5) + a 5: plot(t,i)

R program of infiltration rate (Philip)

- example with S=30 mm, a=10 m/hour
- low, infiltration rate, high sorption (red)
- high infiltration rate, low sorption (blue)

Formula

Horton equation

- f₁ constant infiltration rate
- *f*₀ initial infiltration rate
- k recession factor

cited in Tarboton, 2003

R program of Horton equation

- example with $f_0 = 30 \text{ mm},$
 - $f_1 = 5$ mm/hour
- higher initial rate (blue)
- higher final rate (red)
- higher recession constant (green)

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Formula

Green & Ampt Model

- h_f corresponds to ψ_f
- model works with sharp wetting fronts

Formula

Green & Ampt equation

- Assuming block sharp wetting front
- Analytical solution
- Can include ponded water

cited in Tarboton, 2003

Green & Ampt equation

At any time, t, the penetration of the infiltrating wetting front will be Z. Darcy's law can be stated as follows:

$$q = \frac{dI}{dt} = -K_{sat} * \left[\frac{\psi_f - (h_s + Z)}{Z}\right]$$

where K_s is the hydraulic conductivity corresponding to the surface water content, and I(t) is the cumulative infiltration at time *t*, and is equal to $Z * (\theta_s - \theta_0)$.

with	I(t)	infiltration amount	[<i>cm</i>]
	K _{sat}	hydr. conductivity	[<i>cm/h</i>
	ψ_{f}	wetting front pressure head (negative)	ст
	h _s	water pressure at surface (ponding)	ст
	Ζ	depth	ст

Green & Ampt equation

Using this relation for I(t) to eliminate Z and performing the integration yields,

$$I = K_{sat} * t - (\psi_f - h_s) * (\theta_s - \theta_0) * \log_e \left(1 - \frac{I}{(\psi_f - h_s) * (\theta_s - \theta_0)}\right)$$

with I(t)infiltration amount [cm]K_{sat} [cm/h]hydr. conductivity wetting front pressure head (negative) ψ_{f} cm water pressure at surface (ponding) hs cm moisture content at saturation $\theta_{\rm S}$ θ_0 antecedent moisture

Green & Ampt equation

In order to solve this equation, we need to bring I(t) to one side of the equation:

$$\frac{1}{K_{sat}} * \left[I - (\psi_f - h_s) * (\theta_s - \theta_0) * \log_e \left(1 - \frac{I}{(\psi_f - h_s) * (\theta_s - \theta_0)} \right) \right] = t$$

infiltration amount with I(t)|cm|Ksat hydr. conductivity [cm/h]wetting front pressure head (negative) ψ_{f} cm $h_{\rm s}$ water pressure at surface (ponding) cm moisture content at saturation $\theta_{\rm S}$ antecedent moisture θ_0

R program of Green & Ampt equation

- implicit: insert *I* to get *t*
- plot t (result) versus l (input)
- works though!
- calculates impact of ponding

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Green & Ampt parameters

Green - Ampt infiltration parameters for various soil classes (Rawls et al., 1983). The numbers in parentheses are one standard deviation around the parameter value given.

Soil	Porosity n	Effective	Wetting	Hydraulie
Texture		porosity 0	front soil	conductivity
		• • • •	suction	K _{at} (cm/hr)
			head $ \Psi_f $	
			(cm)	
Sand	0.437	0.417	4.95	11.78
	(0.374-0.500)	(0.354-0.480)	(0.97-25.36)	
Loamy	0.437	0.401	6.13	2.99
sand	(0.363-0.506)	(0.329-0.473)	(1.35-27.94)	
Sandy	0.453	0.412	11.01	1.09
loam	(0.351-0.555)	(0.283-0.541)	(2.67-45.47)	
Loam	0.463	0.434	8.89	0.34
	(0.375-0.551)	(0.334-0.534)	(1.33-59.38)	
Silt loam	0.501	0.486	16.68	0.65
	(0.420-0.582)	(0.394-0.578)	(2.92-95.39)	
Sandy clay	0.398	0.330	21.85	0.15
loam	(0.332-0.464)	(0.235-0.425)	(4.42-108.0)	
Clay loam	0.464	0.309	20.88	0.1
	(0.409-0.519)	(0.279-0.501)	(4.79-91.10)	
Silty clay	0.471	0.432	27.30	0.1
loam	(0.418-0.524)	(0.347-0.517)	(5.67-	
			131.50)	
Sandy clay	0.430	0.321	23.90	0.06
	(0.370-0.490)	(0.207-0.435)	(4.08-140.2)	
Silty clay	0.479	0.423	29.22	0.05
	(0.425-0.533)	(0.334-0.512)	(6.13-139.4)	
Clay	0.475	0.385	31.63	0.03
	(0.427 - 0.523)	(0.269-0.501)	(6.39-156.5)	

- K_{sat} sat. hydr. conductivity
- |\u03c6_f| suction at wetting front
- θ_e effective porosity
- θ₀ initial
 wetness

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Formula

Time to Ponding

	Infiltration capacity	Cumulative infiltration at	Cumulative infiltration under ponded
		ponding	conditions
Green- Ampt	$f_{C} = K_{sat} \left(1 + \frac{P}{F} \right)$	$F_{p} = \frac{K_{sat}P}{(w - K_{sat})}$	$t - t_{S} = \frac{F - F_{S}}{K_{sat}} + \frac{P}{K_{sat}} ln \left(\frac{F_{S} + P}{F + P}\right)$
		$w \geq K_{\rm sat}$	Solve implicitly for F
Parameters K _{sat} and P			
Horton	$\mathbf{F} = \frac{\mathbf{f_0} - \mathbf{f_c}}{\mathbf{h}} - \frac{\mathbf{f_1}}{\mathbf{h}} \ln \left(\frac{\mathbf{f_c} - \mathbf{f_1}}{\mathbf{f_c} - \mathbf{f_1}} \right)$	$F_{p} = \frac{f_{0} - w}{h} - \frac{f_{1}}{h} \ln \left(\frac{w - f_{1}}{f_{0} - f_{0}} \right)$	Solve first for time offset t_o in
	K K (10-11)		$F_{S} = f_{1}(t_{S} - t_{0}) + \frac{(f_{0} - f_{1})}{k}(1 - e^{-k(t_{S} - t_{0})})$
Parameters k f. f.	Solve implicitly for f _e given F	$f_e \le w \le f_o$	-
*, *0, *1.			then
			$F = f_1(t - t_0) + \frac{(f_0 - f_1)}{k}(1 - e^{-k(t - t_0)})$
Philip	$f_c(F) = K_p + \frac{K_p S_p}{\sqrt{2}}$	$\mathbf{F}_{\mathbf{p}} = \frac{\mathbf{S}_{\mathbf{p}}^{2}(\mathbf{w} - \mathbf{K}_{\mathbf{p}}/2)}{\mathbf{S}_{\mathbf{p}}^{2}}$	Solve first for time offset to in
	$\sqrt{S_p^2 + 4K_pF - S_p}$	$^{P} 2(w-K_{p})^{2}$	$t_0 = t_s - \frac{1}{1-(\sqrt{S_n^2 + 4K_nF_s} - S_n)^2}$
Parameters K _p and S _p		$w > K_p$	$4K_p^2 (V P P^* P)$
			then
			$F = S_{p}(t-t_{0})^{1/2} + K_{p}(t-t_{0})$
			P. C. P. C.

Examples and exercises in At a Point Infiltration Models, Chapter 5, Tarabaton (2003)

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Runoff models

Rainfall - Infiltration = Runoff

cited in Tarboton, 2003

Rainfall - Infiltration Real world example

cited in Tarboton, 2003

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Φ – IndexMethod

- Φ is a constant infiltration rate
- $R > \Phi$: $Q = R \Phi$ runoff
- $R < \Phi$: Q = 0 no runoff
- coarse material, long time steps, large basins

Wetness & Infiltration Runoff Parameter

- higher infiltration rate in dry soil
- higher initial rate

SCS Method Rural Basins

- yields total runoff in [mm]
- regional model (!), conversion to SI [mm]: CN*25.4

SCS Method

Land Use Description		Hy	Hydrologic Soil Group			
	•	А	В	С	D	
Cultivated land: without conservation treatment			81	88	99	
with co	onservation treatment	62	71	787	81	
Pasture or range land:	poor condition ¹	68	79	86	89	
g	ood condition1	39	61	74	80	
Meadow: good condition	on	30	58	71	78	
Wood or forest land: th	in stand, poor cover, no mulch	45	66	77	83	
g	ood cover ²	25	55	70	77	
Open Spaces, lawns, pa	rks, golf courses, cemeteries, etc.					
good condition: g	rass cover on 75% or more of the area	39	61	74	80	
fair condition: grass cover on 50% to 75% of the area			69	79	84	
Commercial and business areas (85% impervious)			92	94	95	
Industrial districts (72% impervious)		81	88	91	93	
Residential						
Average lot size	Average % impervious					
1/8 acre or less	65	77	85	90	92	
1/4 acre	38	61	75	83	87	
1/3 acre	30	57	72	81	87	
1/2 acre	25	54	70	80	85	
1 acre	20	51	68	79	84	
Paved parking lots, roofs, driveways, etc.			98	98	98	
Streets and roads:						
paved with curbs and	d storm sewers	98	98	98	98	
gravel		76	85	89	91	
dirt	dirt			87	89	

 soil groups A,B,C,D

vegetation type

 yield Curve Numbers (CNvalues)

SCS Method

	Total 5-day antecedent rainfall (in)			
AMC group	Dormant Season	Growing Season		
I	Less than 0.5	Less than 1.4		
Π	0.5 to 1.1	1.4 to 2.1		
III	Over 1.1	Over 2.1		

$$CN(I) = \frac{4.2CN(II)}{10 - 0.058CN(II)}$$

normal II

- if dry I
- if wet III

and

$$CN(III) = \frac{23CN(II)}{10 + 0.13CN(II)}$$

SCS Equation Basic Assumptions

The SCS equation is based on the assumption that:

$$\frac{F}{S} = \frac{Q}{(P - I_a)}$$

with	F	infiltration amount	[<i>mm</i>]
	S	maximum storage	[<i>mm</i>]
	Q	runoff	[<i>mm</i>]
	Ρ	precipitation	[<i>mm</i>]
	I_a	initial loss	[mm]

We also assume that the water balance holds:

$$F = (P - I_a) - Q$$

Runoff

SCS Equation Solution

The SCS equation is derived by combining both assumptions and solving for Q:

$$F = (S * Q)/(P - I_a)$$

$$F = (P - I_a) - Q$$

$$(P - I_a) - Q = (S * Q)/(P - I_a)$$

$$(P - I_a)^2 - Q * (P - I_a) = (S * Q)$$

$$(P - I_a)^2 = (Q * S) + Q * (P - I_a)$$

$$(P - I_a)^2 = Q * (P + S - I_a)$$

$$Q = \frac{(P - I_a)^2}{(P + (S - I_a))}$$

Runoff

SCS Equation Initial loss

The equation is simplified by expressing I_a as a function of S:

$$l_{a} = f * S$$

$$f = 0.1$$

$$Q = \frac{(P - f * S)^{2}}{(P + (S - f * S))}$$

$$Q = \frac{(P - f * S)^{2}}{(P + ((1 - f) * S))}$$

$$Q = \frac{(P - 0.1 * S)^{2}}{(P + (0.9 * S))}$$

For U.S. f=0.2 for Europe usually f=0.05-0.1.

SCS Equation

Runoff Q in [mm] can be calculated using the equation:

$$Q = \frac{(P - I_a)^2}{(P - I_a) + S)}$$

with	F	infiltration amount	[<i>mm</i>]
	S	maximum storage	[<i>mm</i>]
	Q	runoff	[<i>mm</i>]
	Ρ	precipitation	[<i>mm</i>]
	I _a	initial loss	[<i>mm</i>]

Curve Numbers

The storage can be translated into curve numbers or CN into storage using:

$$S = \frac{1000}{(S+10)}$$

$$S = f_c * \left[\frac{1000}{(S+10)}\right]$$

$$S = \frac{25,400}{(S+254)}$$

Estimation of initial loss and total storage

- Regional experiments *I_a* versus *S*
- S estimated from water balance
- Requires measurement of P, Q, F

Estimation of initial loss and total storage

- Regional experiments *I_a* versus *S*
- S estimated from water balance
- Requires measurement of P, Q, F

Curve Numbers

Cover description				Curve numbers for hydrologic soil group—		
Cover type	Treatment*	Hydrologic condition**	A	B	C	D
Fallow	Bare Soil	_	77	86	91	94
	Crop residue cover (CR)	Poor Good	76 74	85 83	90 88	93 90
Row crops	Straight row (SR)	Poor Good	72 67	81 78	88 85	91 89
	SR + CR	Poor Good	71 64	80 75	87 82	90 85
	Contoured (C)	Poor Good	70 65	79 75	84 82	88 86
	C + CR	Poor Good	69 64	78 74	83 81	87 85
	Contoured & terraced (C&T)	Poor Good	66 62	74 71	80 78	82 81
	C&T + CR	Poor Good	65 61	73 70	79 77	81 80
Small grain	SR	Poor Good	65 63	76 75	84 83	88 87
	SR + CR	Poor Good	64 60	75 72	83 80	86 84
	с	Poor Good	63 61	74 73	82 81	85 84
	C + CR	Poor Good	62 60	73 72	81 80	84 83
	C&T	Poor Good	61 59	72 70	79 78	82 81
	C&T + CR	Poor Good	60 58	71 69	78 77	81 80
Close-seeded or broadcast	SR	Poor Good	66 58	77 72	85 81	89 85
legumes or rotation	с	Poor Good	64 55	75 69	83 78	85 83
meadow	C&T	Poor Good	63 51	73 67	80 76	83 80

- soil for hydrologic groups
- vegetation specifically for agriculture

Sample curve numbers, Reference; TR-55

Prof. Dr. Christoph Külls, Hydrology Lab 2017

Curve Numbers Impervious Area Correction

Curve Numbers Impervious Area Correction

Design Tables

FACH

Parameters Effective Porosity

Texture	Brakensiek et al., 1981	Panian, 1987	Carsel and Parrish, 1988
Sand	0.35	0.38	0.43
Loamy Sand	0.41	0.43	0.41
Sandy Loam	0.42	0.44	0.41
Loam	0.45	0.44	0.43
Silty Loam	0.48	0.49	0.45
Sandy Clay Loam	0.41	0.48	0.39
Clay Loam	0.48	0.47	0.41
Silty Clay Loam	0.47	0.48	0.43
Silty Clay	0.48	0.49	0.36
Clay	0.48	0.49	0.38

(A) \

Parameters Residual moisture

Texture	Brakensiek et al., 1981	Panian, 1987	Carsel and Parrish, 1988
Sand	0.054	0.020	0.045
Loamy Sand	0.060	0.032	0.057
Sandy Loam	0.118	0.045	0.065
Loam	0.078	0.057	0.078
Silty Loam	0.038	0.026	0.067
Sandy Clay Loam	0.188	0.093	0.100
Clay Loam	0.185	0.107	0.095
Silty Clay Loam	0.155	0.089	0.089
Silty Clay	0.182	0.102	0.070
Clay	0.226	0.178	0.068

Table Typical values of residual volu	metric water content (θ_r) .
---------------------------------------	-------------------------------------

T 11

Parameters Air-Entry Pressure

Texture	Brakensiek et al., 1981	Panian, 1987	Carsel and Parrish, 1988
Sand	35.30	3.58	6.90
Loamy Sand	15.85	1.32	8.06
Sandy Loam	29.21	9.01	13.33
Loam	50.94	19.61	27.78
Silty Loam	69.55	31.25	50.00
Sandy Clay Loam	46.28	7.81	16.95
Clay Loam	42.28	31.25	52.63
Silty Clay Loam	57.78	30.30	100.00
Silty Clay	41.72	15.87	200.00
Clay	63.96	10.00	125.00

101 10 1

Parameters Poresize Index

Texture	Brakensiek et al., 1981	Panian, 1987	Carsel and Parrish, 1988		
Sand	0.57	0.40	1.68		
Loamy Sand	0.46	0.47	1.28		
Sandy Loam	0.40	0.52	0.89		
Loam	0.26	0.40	0.56		
Silty Loam	0.22	0.42	0.41		
Sandy Clay Loam	0.37	0.44	0.48		
Clay Loam	0.28	0.40	0.31		
Silty Clay Loam	0.18	0.36	0.23		
Silty Clay	0.21	0.38	0.09		
Clay	0.21	0.41	0.09		

Table Typical values of pore size index (λ) .

Parameters

Texture Class Sau S	Sample Size	Total Porosity (φ)	Residual Water Content	Effective Porosity (φ _e)	Bubbling Pressure (h_b)		Pore Size Distribution (λ)		Water Retained at -33 kPa	Water Retained at -1500 kPa	Saturated Hydraulic Conductivity (K _i)
		cm ³ /cm ³	cm^3/cm^3	cm ³ /cm ³	Arithmetic cm	Geometric" cm	Arithmetic	Geometric"	cm ³ /cm ³	cm ³ /cm ³	cm/hr
Sand	762	0.437* (.374500)	0.020 (.001039)	0.417 (.354480)	15.98 (.24-31.72)	7.26 (1.36-38.74)	0.694 (.298-1.090)	0.592 (.334-1.051)	0.091 (.018164)	0.033 (.007059)	21.00
Loamy Sand	338	0.437 (.368506)	0.035 (.003067)	0.401 (.329473)	20.58 (-4.04-45.20)	8.69 (1.80-41.85)	0.553 (.234872)	0.474 (.271827)	0.125 (.060190)	0.055 (.019091)	6.11
Sandy Loam	666	0.453 (.351555)	0.041 (.024106)	0.412 (.283541)	30.20 (-3.61-64.01)	14.66 (3.45-62.24)	0.378 (.140616)	0.322 (.186558)	0.207 (.126288)	0.095 (.031159)	2.59
Loam	383	0.463 (.375551)	0.027 (.020074)	0.434 (.334534)	40.12 (-20.07-100.3)	11.15 (1.63-76.40)	0.252 (.086418)	0.220 (.137355)	0.270 (.195345)	0.117 (.069165)	1.32
Silt Loam	1206	0.501 (.420582)	0.015 (.028058)	0.486 (.394578)	50.87 (-7.68-109.4)	20.76 (3.58-120.4)	0.234 (.105363)	0.211 (.136326)	0.330 (.258402)	0.133 (.078188)	0.68
Sandy Clay Loam	498	0.398 (.332464)	0.068 (.001137)	0.330 (.235425)	59.41 (-4.62-123.4)	28.08 (5.57-141.5)	0.319 (.079889)	0.250 (.125502)	0.255 (.186324)	0.148 (.085211)	4.3
Clay Loam	366	0.464 (.409519)	0.075 (.024174)	0.390 (.279501)	56.43 (-11.44-124.3)	25.89 (5.80-115.7)	0.242 (.070414)	0.194 (.100377)	0.318 (.250386)	0.197 (.115279)	.23
Silty Clay Loam	689	0.471 (.418524)	0.040 (.038118)	0.432 (.347517)	70.33 (-3.26-143.9)	32.56 (6.68-158.7)	0.177 (.039315)	0.151 (.090253)	0.366 (.304428)	0.208 (.138278)	.15
Sandy Clay	45	0.430 (.370490)	0.109 (.013205)	0.321 (.201435)	79.48 (-20.15-179.1)	29.17 (4.96-171.6)	0.223 (.048398)	0.168 (.078364)	0.339 (.245433)	0.239 (.162316)	.12
Silty Clay	127	0.479 (.425533)	0.56 (.024136)	0.423 (.334512)	76.54 (-6.47-159.6)	34.19 (7.04-166.2)	0.150 (.040260)	0.127 (.074219)	0.387 (.332442)	0.250 (.193307)	.09
Clay	291	0.475 (.427523)	0.090 (.015195)	0.385 (.269501)	85.60 (-4.92-176.1)	37.30 (7.43-187.2)	0.165 (0.31293)	0.131 (.068253)	0.396 (.326466)	0.272 (.208336)	.06

*First line is the mean value, and second is one standard deviation about the mean.

Infiltration Experiments Devices

Summary

- Measurement methods: Guelph, double ring, single ring and suction plate
- Models: Horton, Philip, Green-Ampt, Haverkamp
- Application: Runoff modeling, recharge, pollutants