

#### WATER • ENVIRONMENT • ENGINEERING

## **Runoff - Models**

Prof. Dr. Christoph Külls, Hydrology and International Water Management

HyWa



#### Content

- 1. Introduction
- 2. Relevance in Hydrology
- 3. Runoff Generation
- 4. Hydrograph Modeling
- 5. Storage Models
- 6. Flood Routing
- 7. Summary



#### Objectives

Understand Runoff Generation

- Runoff production
- Runoff concentration
- Flood routing



#### Runoff



Tarboton, 2003

#### **Runoff Generation**



#### Runoff



Tarboton, 2003





#### Hydrograph Predicting Elements



#### NRCS triangular unit hydrograph (SCS, 1985)

Tarboton, 2003



#### Hydrograph Peak Discharge

 $Q_p = f * C * I * A$ 



This method can only be applied in small basins of few  $km^2$  area. It is interesting to note that this method assumes that infiltration is a constant fraction of precipitation.

# Hydrograph Modeling Coefficients



|                              | 710 year retarn perious |  |
|------------------------------|-------------------------|--|
| Description of drainage area | Runoff coefficient      |  |
| Business                     |                         |  |
| Downtown                     | 0.70 - 0.95             |  |
| Neighborhood                 | 0.50 - 0.70             |  |
| Residential                  |                         |  |
| Single-family                | 0.30 - 0.50             |  |
| Multi-unit detached          | 0.40 - 0.60             |  |
| Multi-unit attached          | 0.60 - 0.75             |  |
| Suburban                     | 0.25 - 0.40             |  |
| Apartment dwelling           | 0.50 - 0.70             |  |
| Industrial                   |                         |  |
| Light                        | 0.50 - 0.80             |  |
| Heavy                        | 0.60 - 0.90             |  |
| Parks and cemeteries         | 0.10 - 0.25             |  |
| Railroad yards               | 0.20 - 0.35             |  |
| Unimproved areas             | 0.10 - 0.30             |  |
| Pavement                     |                         |  |
| Asphalt                      | 0.70 - 0.95             |  |
| Concrete                     | 0.80 - 0.95             |  |
| Brick                        | 0.75 - 0.85             |  |
| Roofs                        | 0.75 - 0.95             |  |
| Lawns                        |                         |  |
| Sandy soils                  |                         |  |
| Flat (2%)                    | 0.05 - 0.10             |  |
| Average (2 - 7 %)            | 0.10 - 0.15             |  |
| Steep ( ≥ 7%)                | 0.15 - 0.20             |  |
| Heavy soils                  |                         |  |
| Flat (2%)                    | 0.13 - 0.17             |  |
| Average (2 - 7 %)            | 0.18 - 0.22             |  |
|                              | 0.25 0.25               |  |

Source: Adapted from ASCE (1992)



Hydrograph
 Concentration Time by Kirpich

$$t_c = 0.06625 * \frac{L^{0.77}}{S^{0.385}}$$

| with | t <sub>c</sub> | concentration time | [hours]      |
|------|----------------|--------------------|--------------|
|      | L              | Length of basin    | [ <i>m</i> ] |
|      | С              | Slope              | [—]          |

The concentration time is relevant for the selection of the design storm: The design storm should have the duration of the concentration time. Applicable to basins of up to 80 ha. For larger basins apply a correction factor of  $f_c = 2 * t_c$  for very small sealed urban basins of  $f_c = 0.4 * t_c$ .



## Runoff Amout Area and Integral of Hydrograph

Runoff Q in [mm] can be calculated using the equation:

$$Q = \frac{(P - I_a)^2}{(P - I_a) + S)}$$

| with | F  | infiltration amount | [ <i>mm</i> ] |
|------|----|---------------------|---------------|
|      | S  | maximum storage     | [ <i>mm</i> ] |
|      | Q  | runoff              | [ <i>mm</i> ] |
|      | Ρ  | precipitation       | [ <i>mm</i> ] |
|      | Ia | initial loss        | [ <i>mm</i> ] |



HydrographTotal Shape



Prof. Dr. Christoph Külls, Hydrology Lab 2017



## Hydrograph Total Shape

| $t/t_p$ | $Q/Q_p$ | $t/t_p$ | $Q/Q_p$ |
|---------|---------|---------|---------|
| 0.0     | 0.000   | 1.4     | 0.780   |
| 0.1     | 0.030   | 1.5     | 0.680   |
| 0.2     | 0.100   | 1.6     | 0.560   |
| 0.3     | 0.190   | 1.8     | 0.390   |
| 0.4     | 0.310   | 2.0     | 0.280   |
| 0.5     | 0.470   | 2.2     | 0.207   |
| 0.6     | 0.660   | 2.4     | 0.147   |
| 0.7     | 0.820   | 2.6     | 0.107   |
| 0.8     | 0.930   | 2.8     | 0.077   |
| 0.9     | 0.990   | 3.0     | 0.055   |
| 1.0     | 1.000   | 3.5     | 0.025   |
| 1.1     | 0.990   | 4.0     | 0.011   |
| 1.2     | 0.930   | 4.5     | 0.005   |
| 1.3     | 0.860   | 5.0     | 0.000   |

Source: SCS (1985)



#### S Hydrograph Superposition of Input Signals



Prof. Dr. Christoph Külls, Hydrology Lab 2017



## Unit Hydrograph Convolution

$$\begin{cases} Q_1 = P_1 U_1 \\ Q_2 = P_2 U_1 + P_1 U_2 \\ \dots \\ Q_M = P_M U_1 + P_{M-1} U_2 + \dots + P_1 U_M \\ Q_{M+1} = 0 + P_M U_2 + \dots + P_2 U_M + P_1 U_{M+1} \\ \dots \\ Q_{N-1} = 0 + 0 + \dots + 0 + 0 + \dots + P_M U_{N-M} + P_{M-1} U_{N-M+1} \\ Q_N = 0 + 0 + \dots + 0 + 0 + \dots + 0 + P_M U_{N-M+1} \end{cases}$$



## **Conceptual Runoff Models**

Storage Models



#### Linear Storage Hydrograph



Storage Models



Linear Storage Concept

$$\begin{array}{rcl} u_{rl}(t) &=& (1/k) * (1 - exp(t/k)) \\ Q_p(t) &=& I * (1 - exp(D/k)) \\ u_{fl}(t) &=& (1/k) * exp((t-D)/k) \\ Q_{fl}(t) &=& Q_p * exp((t-D)/k) \end{array}$$



The u(t) unit function describes the reaction of the basin to a unit input, it needs to be multiplied with an input intensity *I* to yield Q(t). *rl*, *p* and *fl* stand for rising limb, peak and falling limb. Prof. Dr. Christoph Külls, Hydrology Lab 2017



#### Linear Storage Model Rising Limb



FACH HOCHSCHULE LÜBECK

Storage Models

#### Linear Storage Model Recession Limb



Storage Models



#### n Linear Stores Nash Cascade



FACH HOCHSCHULE LÜBECK

Storage Models

#### Nash-Cascade Concept

$$u(t) = \frac{1}{k * \Gamma(n)} * \left(\frac{t}{k}\right)^{(n-1)} * \exp\left(-\frac{t}{k}\right)$$

with 
$$u(t)$$
 unit discharge  $[m^3/s]$   
 $k$  storage coefficient  $[h]$   
 $n$  number of stores  $[-]$   
 $t$  time  $[h]$   
 $\Gamma(n)$  Gamma function of  $n$   $[-]$ 

The time *t* is the time since the onset of rainfall. If *n* is an integer  $\Gamma(n)$  can be replaced by (n - 1)!.



## Nash-Cascade Changing k



#### k=0.1 (blue), k=0.3 (green)

Prof. Dr. Christoph Külls, Hydrology Lab 2017



Storage Models

# Nash-Cascade Changing n



n=4 (blue), n=6 (green)

Prof. Dr. Christoph Külls, Hydrology Lab 2017





## Diffusion of Flood in Channel Advection Dispersion Equation





#### ADE Equation

(

$$\begin{aligned} \mathcal{Q}(t) &= \frac{x}{\sqrt{4*pi*D*t^3}}*exp\left[-\frac{(x-v_c*t)^2}{4*D*t}\right]\\ D &= v_c*\alpha = v_c*f_D*x \end{aligned}$$

| with | Q(t)    | discharge              | [ <i>m</i> <sup>3</sup> / <i>s</i> ] |
|------|---------|------------------------|--------------------------------------|
|      | Х       | distance               | [ <i>m</i> ]                         |
|      | D       | Dispersion coefficient | [ <i>h</i> ]                         |
|      | t       | time                   | [ <i>h</i> ]                         |
|      | $V_{C}$ | velocity               | [ <i>m</i> / <i>s</i> ]              |
|      | $f_D$   | scaling factor         | [ <i>m</i> ]                         |



#### Programming in R ADE

- 1: c<-1.0
- 2: D<-0.1
- 3: x1<-0.5
- 4: t<-seq(0,3.0,0.01)
- 5: u<-x1/(4\*pi\*D\*t<sup>3</sup>)<sup>(1/2</sup>)\*exp(-(x1-c\*t)<sup>2</sup>/(4\*D\*t))
- 6: plot(t,u)



#### Channel Storage Concept

$$Q_Z - Q_A = \frac{dS}{dt}$$

- $Q_Z$  Inflow to channel
- Q<sub>A</sub> Outflow of channel
- *S* Storage in section

t time

$$\frac{\left[Q_{Z}(t)+Q_{Z}(t+\Delta t)\right]}{\left[Q_{A}(t)+Q_{A}(t+\Delta t)\right]} = \frac{\Delta S}{\Delta t}$$

- $\Delta t$  time step
- $\Delta S$  change in storage



#### Storage Change (Continued)

$$\begin{aligned} \frac{(Q_{Z1}+Q_{Z2})}{2} - \frac{(Q_{A1}+Q_{A2})}{2} &= \frac{(S_2-S_1)}{\Delta t} \\ \frac{Q_{Z1}}{2} + \frac{Q_{Z2}}{2} - \frac{Q_{A1}}{2} - \frac{Q_{A2}}{2} &= \frac{S_2}{\Delta t} - \frac{S_1}{\Delta t} \\ \frac{S_2}{\Delta t} + \frac{Q_{A2}}{2} &= \left(\frac{S_1}{\Delta t} + \frac{Q_{A1}}{2}\right) - Q_{A1} + \frac{(Q_{Z1}+Q_{Z2})}{2} \end{aligned}$$

The equation is solved by substituting the right term for equivalents in the left term of the equation:

$$Q_A = f\left(\frac{S}{\Delta t} + \frac{Q_A}{2}\right)$$



### Muskinghum Method Storage Difference Equation

The Muskingum-method combines the linear storage term with a non-linear non-steady part for the incoming flood wave:

$$S = K * Q_A + K * X * (Q_Z - Q_A)$$

K is a storage parameter and X is a dimensionless fitting parameter. The equation is written as a difference equation:

$$S = K * (Q_{A2} - Q_{A1}) + K * X * (Q_{Z2} - Q_{Z1} - Q_{A2} + Q_{A1})$$
  
with  $x \le \frac{\Delta t}{2 * K}$ .

Μ



# Routing Formula $Q_A$ a Function of Inflow and Storage

The routing formula writes (after re-arranging it):

$$Q_A(t + \Delta t) = C_1 * Q_Z(t + \Delta t) + C_2 * Q_Z(t) + C_3 * Q_A(t)$$

With:

$$\begin{array}{ll} C_1 &= [-K * X + 0, 5 * \Delta t] / [K * (1 - X) + 0, 5\Delta t] \\ C_2 &= [+K * X + 0, 5 * \Delta t] / [K * (1 - X) + 0, 5\Delta t] \\ C_3 &= [K * (1 - X) - 0, 5 * \Delta t] / [K * (1 - X) + 0, 5\Delta t] \end{array}$$

Given:  $C_1 + C_2 + C_3 = 1$ .



### Routing Formula Simplification and Parametrization

The routing formula is re-written and simplified with coefficients  $\zeta_1$  and  $\zeta_2$ :

$$QA(t+\Delta t) = QA(t) + \zeta_1 \left[ QZ(t) - QA(t) \right] + \zeta_2 \left[ QZ(t+\Delta t) - QZ(t) \right]$$
  
With:

$$\begin{aligned} \zeta_1 &= & \Delta t / \left[ K(1-X) + 0, 5 * \Delta t \right] \\ \zeta_2 &= & \left[ 0, 5 * \Delta t - K * X \right] / \left[ K * (1-X) + 0, 5 * \Delta t \right] \end{aligned}$$



#### Parameter X

X has values between 0 and 0.5, so that

$$0 \le X \le 0.5$$

If X equals 0.5 there is only translation, with X having a value of 0, there is maximum storage reduction. Most often X has values ranging from 0 to 0.3.





#### Parameter K

Parameter K has the physical meaning of a residence time. When chosing K it should be considered and hold that:

 $2KX \leq dt \leq K$ 

In some cases time step needs to be adjusted, here dt=0.1:





```
1: K<-0.8: X<-0.05 \# with 0 < X < 0.5
2: muskinghum <- function(QA1,QZ1,QZ2,K,X){
3:
  c1 <- dt/(K*(1-X)+0.5*dt)
4: c2 <- (0.5*dt-K*X)/(K*(1-X)+0.5*dt)
5: v \leftarrow QA1 + c1*(QZ1 - QA1) + c2*(QZ2 - QZ1)
6: return(v) # return of QA2}
7: 1 <- length(u)
8: dt <- (tmax - t0)/(1-1)
9: QA2<- array(0.0, dim=c(1))
10: i <- 1
11: while (i < 1) {
12: QZ1 <- u[i]; QZ2 <- u[i+1]
13:
      if (i <= 2) {QA1 <- QZ1} # critical
14: QA2[i] <- muskinghum(QA1,QZ1,QZ2,K,X)
15: QA1 <- QA2[i]
16: i < -i + 1 }
```





- Overlay of QZ(t) and Discharge QA(t)
- Fill (F1) and Empty (F2) Storage (S)
- $\Delta S = 0$  when QA(t)=QZ(t)
- Discharge curve Q<sub>A</sub> = f(h)
- Storage volume
   S = f(h)

Quelle: Maniak (2010)

Summary



#### Summary

- Point infiltration: effective Parameters
- Basin infiltration
- Constant rate loss: Mulvaney
- Conceptual Models
- Hydrological routing