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Introduction

Objectives

Understand Runoff Generation

Runoff production
Runoff concentration
Flood routing
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Runoff Generation

Runoff

Tarboton, 2003
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Runoff Generation

Runoff

Tarboton, 2003
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Hydrograph Modeling

Hydrograph Modeling
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2017



7

Hydrograph Modeling

Hydrograph
Predicting Elements

Tarboton, 2003
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Hydrograph Modeling

Hydrograph
Peak Discharge

Qp = f ∗ C ∗ I ∗ A

with Qp Peak discharge [m3/s]
f f = 0.278 = 1/3.6 [−]
C runoff coefficient [−]
I precipitation intensity [mm/h]
A basin area [km2]

This method can only be applied in small basins of few km2

area. It is interesting to note that this method assumes that
infiltration is a constant fraction of precipitation.
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Hydrograph Modeling

Coefficients
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Hydrograph Modeling

Hydrograph
Concentration Time by Kirpich

tc = 0.06625 ∗ L0.77

S0.385

with tc concentration time [hours]
L Length of basin [m]
C Slope [−]

The concentration time is relevant for the selection of the
design storm: The design storm should have the duration of the
concentration time. Applicable to basins of up to 80 ha. For
larger basins apply a correction factor of fc = 2 ∗ tc for very
small sealed urban basins of fc = 0.4 ∗ tc.
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Hydrograph Modeling

Runoff Amout
Area and Integral of Hydrograph
Runoff Q in [mm] can be calculated using the equation:

Q =
(P − Ia)2

(P − Ia) + S)

with F infiltration amount [mm]
S maximum storage [mm]
Q runoff [mm]
P precipitation [mm]
Ia initial loss [mm]
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Hydrograph Modeling

Hydrograph
Total Shape
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Hydrograph Modeling

Hydrograph
Total Shape
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Hydrograph Modeling

S Hydrograph
Superposition of Input Signals
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Hydrograph Modeling

Unit Hydrograph
Convolution
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Hydrograph Modeling

Conceptual Runoff Models
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Storage Models

Linear Storage
Hydrograph

Prof. Dr. Christoph Külls, Hydrology Lab
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Storage Models

Linear Storage
Concept

url(t) = (1/k) ∗ (1 − exp(t/k))

Qp(t) = I ∗ (1 − exp(D/k))

ufl(t) = (1/k) ∗ exp((t − D)/k)

Qfl(t) = Qp ∗ exp((t − D)/k)

with u(t) unit discharge [m3/s]
Q(t) runoff [m3/s]
k recession constant [h]
t time [h]
D Duration [h]
I intensity [m3/h]

The u(t) unit function describes the reaction of the basin to a
unit input, it needs to be multiplied with an input intensity I to
yield Q(t). rl , p and fl stand for rising limb, peak and falling limb.
Prof. Dr. Christoph Külls, Hydrology Lab
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Storage Models

Linear Storage Model
Rising Limb
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Storage Models

Linear Storage Model
Recession Limb
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Storage Models

n Linear Stores
Nash Cascade
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Storage Models

Nash-Cascade
Concept

u(t) =
1

k ∗ Γ(n)
∗
(

t
k

)(n−1)

∗ exp
(
− t

k

)

with u(t) unit discharge [m3/s]
k storage coefficient [h]
n number of stores [−]
t time [h]
Γ(n) Gamma function of n [−]

The time t is the time since the onset of rainfall. If n is an
integer Γ(n) can be replaced by (n − 1)!.
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Storage Models

Nash-Cascade
Changing k
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k=0.1 (blue), k=0.3 (green)
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Storage Models

Nash-Cascade
Changing n
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Storage Models

Flood Routing
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Flood Routing

Diffusion of Flood in Channel
Advection Dispersion Equation
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Flood Routing

ADE
Equation

Q(t) =
x√

4 ∗ pi ∗ D ∗ t3
∗ exp

[
−(x − vc ∗ t)2

4 ∗ D ∗ t

]
D = vc ∗ α = vc ∗ fD ∗ x

with Q(t) discharge [m3/s]
x distance [m]
D Dispersion coefficient [h]
t time [h]
vc velocity [m/s]
fD scaling factor [m]
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Flood Routing

Programming in R
ADE

1: c<-1.0

2: D<-0.1

3: x1<-0.5

4: t<-seq(0,3.0,0.01)

5: u<-x1/(4*pi*D*t^3)^(1/2)*exp(-(x1-c*t)^2/(4*D*t))

6: plot(t,u)

Prof. Dr. Christoph Külls, Hydrology Lab
2017
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Flood Routing

Channel Storage
Concept

QZ − QA =
dS
dt

QZ Inflow to channel
QA Outflow of channel
S Storage in section
t time

[QZ (t) + QZ (t + ∆t)]

2
−

[QA(t) + QA(t + ∆t)]

2
=

∆S
∆t

∆t time step
∆S change in storage
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Flood Routing

Storage Change
(Continued)

(QZ1 + QZ2)

2
− (QA1 + QA2)

2
=

(S2 − S1)

∆t
QZ1

2
+

QZ2

2
− QA1

2
− QA2

2
=

S2

∆t
− S1

∆t
S2

∆t
+

QA2

2
=

(
S1

∆t
+

QA1

2

)
− QA1 +

(QZ1 + QZ2)

2

The equation is solved by substituting the right term for
equivalents in the left term of the equation:
QA = f

(
S

∆t + QA
2

)
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Flood Routing

Muskinghum Method
Storage Difference Equation
The Muskingum-method combines the linear storage term with
a non-linear non-steady part for the incoming flood wave:

S = K ∗ QA + K ∗ X ∗ (QZ − QA)

K is a storage parameter and X is a dimensionless fitting
parameter. The equation is written as a difference equation:

S = K ∗ (QA2 − QA1) + K ∗ X ∗ (QZ2 − QZ1 − QA2 + QA1)

with x ≤ ∆t
2∗K .
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Flood Routing

Routing Formula
QA a Function of Inflow and Storage
The routing formula writes (after re-arranging it):

QA(t + ∆t) = C1 ∗ QZ (t + ∆t) + C2 ∗ QZ (t) + C3 ∗ QA(t)

With:

C1 = [−K ∗ X + 0,5 ∗ ∆t ]/[K ∗ (1 − X ) + 0,5∆t ]
C2 = [+K ∗ X + 0,5 ∗ ∆t ]/[K ∗ (1 − X ) + 0,5∆t ]
C3 = [K ∗ (1 − X ) − 0,5 ∗ ∆t ]/[K ∗ (1 − X ) + 0,5∆t ]

Given: C1 + C2 + C3 = 1.
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Flood Routing

Routing Formula
Simplification and Parametrization
The routing formula is re-written and simplified with coefficients
ζ1 and ζ2:

QA(t+∆t) = QA(t)+ζ1 [QZ (t) − QA(t)]+ζ2 [QZ (t + ∆t) − QZ (t)]

With:

ζ1 = ∆t/ [K (1 − X ) + 0,5 ∗ ∆t ]
ζ2 = [0,5 ∗ ∆t − K ∗ X ] / [K ∗ (1 − X ) + 0,5 ∗ ∆t ]

Prof. Dr. Christoph Külls, Hydrology Lab
2017
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Flood Routing

Parameter X
X has values between 0 and 0.5, so that

0 ≤ X ≤ 0.5

If X equals 0.5 there is only translation, with X having a value
of 0, there is maximum storage reduction. Most often X has
values ranging from 0 to 0.3.
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Flood Routing

Parameter K
Parameter K has the physical meaning of a residence time.
When chosing K it should be considered and hold that:

2KX ≤ dt ≤ K

In some cases time step needs to be adjusted, here dt=0.1:
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Flood Routing

1: K<-0.8; X<-0.05 # with 0 < X < 0.5

2: muskinghum <- function(QA1,QZ1,QZ2,K,X){

3: c1 <- dt/(K*(1-X)+0.5*dt)

4: c2 <- (0.5*dt-K*X)/(K*(1-X)+0.5*dt)

5: v <- QA1 + c1* (QZ1 - QA1) + c2*(QZ2 - QZ1)

6: return(v) # return of QA2}

7: l <- length(u)

8: dt <- (tmax - t0)/(l-1)

9: QA2<- array(0.0, dim=c(l))

10: i <- 1

11: while (i < l) {

12: QZ1 <- u[i]; QZ2 <- u[i+1]

13: if (i <= 2) {QA1 <- QZ1} # critical

14: QA2[i] <- muskinghum(QA1,QZ1,QZ2,K,X)

15: QA1 <- QA2[i]

16: i <- i + 1 }

Prof. Dr. Christoph Külls, Hydrology Lab
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Flood Routing

Lake Storage

Quelle: Maniak (2010)

Overlay of QZ(t)
and Discharge
QA(t)
Fill (F1) and
Empty (F2)
Storage (S)
∆S = 0 when
QA(t)=QZ(t)
Discharge
curve QA = f (h)

Storage volume
S = f (h)
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Summary

Summary

Point infiltration: effective Parameters
Basin infiltration
Constant rate loss: Mulvaney
Conceptual Models
Hydrological routing
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