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Discharge Measurement

The resulting tracer breakthrough curve measured downstream arises typically from
a background concentration to a constant value called the plateau concentration
(Figure  1). Sampling is only permitted after the tracer has fully reached the constant
plateau value at the end of the mixing section. One should remember that to obtain
the plateau concentration downstream, the duration of pulse injection (Thulse) has to
be sufficiently long. The discharge is calculated as:

o ‘]in*(cm — Cp)

() =

( (‘p - (‘h)

with q;,  tracer solution inflow rate (1/s)
G, tracer solution concentration (g/l)
o measured sustained ‘plateau’ concentration (g/l)
¢, background concentration (g/l)
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Discharge Measurement
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Discharge Measurement
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Discharge Measurement

with M injected tracer mass (g)

c(t) measured concentration at time, t
¢,  background concentration
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Discharge Measurement
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Discharge Measurement

M

() = ;1 — samples

Y (ci — cp)*At;

I

with ¢; measured concentration at time, t;
At; = (t;,, — t;) time interval between two collected samples
N amount of samples
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Discharge Measurement

Advantage

Disadvantage

Using salt tracer

Slug injection — Short measuring time

- Direct calculation in situ

— May be also achieved with
simple techniques
— Rather cheap equipment
Constant rate injection not recommended for salt

tracers

— Only small discharge measurable

— High masses of tracer needed due to
usually high background
concentrations

Using fluorescent tracer

Slug injection — High discharge measurable

— Small amount of tracer

— Short measuring time
High discharge measurable
— High accuracy
Constant rate injection — Validation possible by repeat
sampling

Accuracy may be affected by sorption
effects on suspended load

— Accuracy may be affected by sorption
effects on suspended load

— Analysis in the laboratory if no field
fluorometer is available

— Photolytical decay of tracers
Long measuring time

— More tracer needed

— Higher effort required for preparation
of experiment
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Discharge Measurement
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Discharge Measurement

The experiment was carried out in clear river water using Uranine. As expected, the
background concentration (c;,) was zero, as Uranine is not part of chemical composi-
tions of natural waters. The tracer breakthrough was sampled at constant time intervals
of exactly At = (t;,, — t;) = 205 and analysed in the laboratory (Figure 6.13).

The injected tracer mass was M = 1 g Uranine. Altogether 27 samples were taken.
According to Equation (6.9), the discharge is calculated as follows:

N M 1000000 f1g
S Y (eix AD T 20sx Y ¢,

Q

The sum of all products of measured concentrations (X¢; x At) is 843.24 [jeg x s/l],
which yields the discharge of:
1000000 peg
 843.24 ug/l/s

= 11861/s ~ 1.2 m’/s.
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Discharge Measurement
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Hydrograph Separation

0 i L 1 = ———
5.3.06 9.3.06 13.3.06 17.3.06

Figure Example for a hydrograph separation in event and pre-event water. Q = discharge
and C = § 0 content of E = Event water, P = Pre-event water.
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Hydrograph Separation

Measured Calculated
Date Qs [m?/s] Cr [%0 V-SMOW] Qr [m?’/s] Qp [m*/s]
6/3/2006 0.87 —9.78 0.05 0.82
7/3/2006 0.82 —9.78 0.05 0.77
8/3/2006 ad —10.07 0.60 1.67
9/3/2006 8.27 —10.58 5.20 3.07
10/3/2006 5.93 —10.19 2.08 3.85
11/3/2006 3.89 -9.99 0.81 3.08
12/3/2006 2.88 9.99 0.60 2.28
13/3/2006 232 —10.02 0.53 1.79
13/3/2006 1.95 —10.02 0.45 1,50
15/3/2006 1.70 —10.02 0.39 1.31
16/3/2006 1.53 —10.02 0.35 1.18
17/3/2006 1.35 —9.82 0.12 123
18/3/2006 1.27 —9.82 0.11 1.16
19/3/2006 1.21 —9.82 0.10 1.11
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Hydrograph Separation

Separation of total discharge in event and pre-event water: assumed event water
. y = . “ o (17
input: Cp = —11.1%o, assumed pre-event water (after low-flow period): Cp = —9.7 %

Qr = Qe +Qp

QrCr = Qg"Cg + Qp*Cp

Cr—Cp
[ (;[-’ - (,p

Qp = Qr— Q¢

QE

Prof. Dr. Christoph Kills 14




Single Well tests
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Single Well tests
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Single Well tests

From the cross-section area A of the borehole given by 7rr* (r = radius of the borehole),
the travel time t’ between injection and detection, and for the distance between the injec
tion depth and the depth of the pump s, the discharge q can be calculated according to:

q=viA =mnrs/t
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Single Well tests

The estimation of the filter velocity is carried out by measuring the dilution of
tracer concentration c(t) in the well, as a function of time (t). The tracer concentra-
tion is monitored continuously after the initial constant homogenous distribution of
the injected tracer with the concentration ¢, (t = 0) is reached. The interpretation
requires a stationary and horizontal groundwater flow through the filter pipe. These

requirements are fulfilled for the tracer probe shown in Figure . The result of the
measurement is a dilution log, in which the filter velocity v¢ can be calculated from
equation

ve =7tr In [co/c(f)]/(2at)
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Single Well tests

Ve =mtr In [¢o/c(f)]/(at)

where
Co = tracer concentration att =0
c(t’) = tracer concentration at t’
r = inner radius of the filter pipe
o = correction factor (~1.5-2.0)

After finding the filter velocity and knowing the regional hydraulic gradient (i) one
can also easily approximate the hydraulic conductivity (k) using Darcy’s Law:

k:V{/i
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Planing a Tracer Test

Problem and aim
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Planing a Tracer Test
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Planing a Tracer Test
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Planing a Tracer Test

® the expected tracer breakthrough curve and the maximum concentrations
corresponding sampling intervals;

® the sampling concept;
* the methods of analysis and interpretation;

* the potential risks and the contingency plans.
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Planing a Tracer Test
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Karst studies

Information on the karst medium;

Geology, geomorphology

Geophysics

Structural and tectonic conditions,
Hydraulically effective disturbance,
Degree of karstification,
Draining system

Spatial heterogeneities,
Preferential flow paths,

Draining system

Information on the flow system and transport processes:

Hydrodynamics =~ Water balance Hydrochemistry Tracer Modelling
techniques
Hydrodynamic Groundwater Origin, Flow direction Flow and
parameters, recharge, transport
parameters,
Flow behaviour  Available Interactions with Flow velocity Calibration,
of the system groundwater surrounding
potential matrix,
Mixing processes, Residence times,  Prediction
Water quality Dispersion,
Retardation,

Determination
of catchment




Karst studies
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Karst studies
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Borehole tests
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Vulnerability Studies in soils

Tracer Sort Abbreviation Dimension
Uranine Soluble dye UR 10~
Sulforhodamine SRG
(5 extra
Bacteria - Streptokokkus faecalis Bak 1
ATTC 19.433
- Coliforme germs out of
drinking water
Spores Lycopodium spores Spo 30

coloured




Vulnerability Studies in soils
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Vulnerability Studies in soils




Vulnerability Studies in soils
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Vulnerability Studies in soils

- 100
Discharge
++o%-+  Bromide 116
——— Tracer recovery —_— <4 80

AN
|
—
M3

\
\
\
\
\
\
\
\
N
~
\
1>
: o :
oo
[s/1] aBieyosig
1 1
e ()]
o =
[24] Alanooal Jaoel |

x
1
M
=

é
|
o
NN

% oo do




	Tracers in Hydrology
	Discharge Measurement
	Discharge Measurement
	Discharge Measurement
	Discharge Measurement
	Discharge Measurement
	Discharge Measurement
	Discharge Measurement
	Discharge Measurement
	Discharge Measurement
	Discharge Measurement
	Hydrograph Separation
	Hydrograph Separation
	Hydrograph Separation
	Single Well tests
	Single Well tests
	Single Well tests
	Single Well tests
	Single Well tests
	Planing a Tracer Test
	Planing a Tracer Test
	Planing a Tracer Test
	Planing a Tracer Test
	Planing a Tracer Test
	Karst studies
	Karst studies
	Karst studies
	Borehole tests
	Borehole tests
	Recharge Studies in soils
	Vulnerability Studies in soils
	Vulnerability Studies in soils
	Vulnerability Studies in soils
	Vulnerability Studies in soils
	Vulnerability Studies in soils
	Vulnerability Studies in soils

