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This study presents a comprehensive community data-driven surface complexation modeling framework for 
simulating potentiometric titration of mineral surfaces. Compiled community data for ferrihydrite, goethite, 
hematite, and magnetite are fit to produce representative protolysis constants that can reproduce potentiometric 
titration data collected from multiple literature sources. Using this framework, the impact of surface complex-
ation model type and surface site density (SSD) on the fit quality and protolysis constants can be readily eval-
uated. For example, the non-electrostatic model yielded a poor data fit compared to diffuse double layer model 
and constant capacitance models due to the absence of known surface charge effects. Regardless of the choice of 
iron oxide mineral, pKa1 decreased with increasing SSD while the opposite tendency was observed for pKa2. This 
newly developed framework demonstrates a method to reconcile community data-wide potentiometric titration 
data using Findable, Accessible, Interoperable, Reusable data principles to produce mineral protolysis constants 
that improve robustness of surface complexation models for applications in metal sorption and reactive transport 
modeling. The framework is readily expandable (as community data increase) and extensible (as the number of 
minerals increase). The framework provides a path forward for developing self-consistent, comprehensive, and 
updateable surface complexation databases for surface complexation and reactive transport modeling.   
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1. Introduction 

Among the various chemical interactions at the mineral–water 
interface, adsorption is considered one of the key mechanisms that 
controls the transport of chemical species in the environment. Histori-
cally, linear distribution coefficients (Kd) have been used to represent 
this retardation process [1]. Although the Kd approach is very simple to 
implement, using Kd values in reactive transport models poses some 
limitations. For instance, the approach cannot account for changes in 
geochemical conditions (e.g. pH and solution ionic strength) [2], and 
maximum adsorption capacity [3], ultimately compromising the flexi-
bility and applicability of Kd-based approaches. 

Over several decades, numerous surface complexation models 
(SCMs) have been developed to quantify the adsorption process occur-
ring at the mineral–water interface and address the limitations of the Kd 
approach. In contrast to the Kd approach, SCMs are based on a chemical 
equilibrium approach and adopt mass action laws (equations) to 
describe equilibrium between aqueous species and adsorbed species 
[4–7]. Therefore, SCMs can address spatial and temporal variations in 
geochemical conditions and their impact on retardation. 

The functional form of a SCM can vary significantly. For example, the 
non-electrostatic model (NEM) is the simplest form of SCM as it neglects 
the impact of an electric double layer (and associated surface potential) 
on surface reaction equilibria. Nevertheless, it has been shown to 
effectively predict field scale transport behavior in some cases [8]. The 
diffuse double layer model (DDLM) includes a simple relationship be-
tween surface charge and surface potential 

σ = 0.1174 × I1/2 × sinh(19.46 × Z × ψ) (1) 

at 25 ◦C where σ is the surface charge (C m− 2), Z is the charge of a 
symmetric electrolyte, I is the ionic strength, and Ψ is the surface po-
tential (volts) with all surface reactions occurring at a single (inner 
sphere) plane. The difference between an apparent and intrinsic surface 
complexation constant can be calculated by 

Kapp = Kint × exp
(
− ΔZFψ

RT

)

(2) 

where Kapp and Kint are the apparent and intrinsic surface complex-
ation constant, respectively, ΔZ is the change in surface charge, F is the 
Faraday constant (96490C mol− 1), R is the gas constant (8.314 J mol− 1 

K− 1), and T is the temperature (K) [9]. Due to its relative simplicity, it 
has often been employed in the development of comprehensive SCM 
databases (e.g. [10,11]) and reactive transport codes (e.g. PHREEQC 
[12], CrunchFlow [13]). More complex functional forms of SCMs also 
exist, including the triple-layer SCM (TLM) [14] that accounts for both 
inner sphere and outer-sphere sorption phenomena and the CD-MUSIC 
model [15] that accounts for multiple surface sites and strict stoichi-
ometry relationships. Even more complex representations of mineral–-
water interface reactions such as those that account for charge 
“spillover” effects on clay surfaces [16] are being developed in the case 
of heterogeneous surface characteristics. 

Since protolysis reactions on mineral surfaces are fundamental to the 
description of adsorption [17], parameters describing surface protolysis 
reactions (i.e. reaction constants) are needed [18] regardless of the SCM 
type. A typical example of surface functional groups occurring on oxide 
or clay minerals are reactive hydroxyl groups. These functional groups 
participate in protolysis reactions (i.e., protonation and deprotonation 
reactions), leading to charge build-up on the surface of solid adsorbents 
[19]. In SCMs, the following two reactions and associated reaction 
constants are widely used to describe the protolysis of surface hydroxyl 
groups [10,20]: 

≫SOH+
2 ⇌≫SOH0 + H+

Kint
a1 =

(
≫SOH0){H+}
(
≫SOH+

2

) exp
(
− FΨ
RT

)

, pKa1 = − logKa1
(3)  

≫SOH0⇌≫SO− + H+

Kint
a2 =

(≫SO− ){H+}
(
≫SOH0) exp

(
− FΨ
RT

)

, pKa2 = − logKa2
(4) 

where () represents concentrations, { } represents activities, and ΔZ 
= -1. The equilibrium constants Kint

a1 and Kint
a2 are the first and the second 

intrinsic protolysis constants, respectively. The increased formation of 
»SOH2

+ compared to »SO- at low pH conditions induces a net positive 
surface charge while at high pH, the surface becomes negatively charged 
due to the increased formation of »SO- in comparison to »SOH2

+ [20]. 
SCMs, thus, can account for the impact of protolysis reactions (and 
surface charge development) on the adsorption of anions or cations to 
the solid adsorbent under variable pH conditions. 

From the perspective of nuclear waste disposal and repository per-
formance assessment, the sorption of radionuclides to iron oxide min-
erals is of great importance for several reasons. Iron oxide minerals are 
commonly found in bedrock, soils, and sediments that host underground 
nuclear waste repositories. Furthermore, the corrosion of engineered 
barriers in radioactive waste repositories will lead to the formation of 
iron oxides [21]. Iron oxide minerals, thus, may provide a significant 
source of radionuclide sorption and retardation both in the near- and far- 
field of a nuclear waste repository. More generally, as iron oxides exert a 
high affinity for pollutants such as heavy metals and organic xenobi-
otics, they have taken on important roles in not only nuclear waste 
disposal but also in general environmental remediation technologies. 
Iron oxide minerals also have an excellent potential to efficiently sorb 
oxyanions [22], while most natural clay minerals exhibit weak to in-
termediate anion adsorption capacities [23]. These facts have led to 
significant research interest regarding the sorption properties of iron 
oxides and, in turn, an interest in understanding the fundamental 
characteristics of iron oxides [24]. This research has included experi-
mental (e.g., potentiometric titrations: [25–27]) and theoretical (e.g., 
[17,28]) studies of the protolysis characteristics of iron oxide surfaces. 

Although considerable effort has been made to understand protolysis 
characteristics of iron oxides and to develop reliable SCMs for iron oxide 
adsorption, a present-day challenge still exists in determining which 
SCMs and associated reaction parameters are most appropriate for 
downstream reactive transport models. In various studies [29–34], 
different surface protolysis constants have been reported even in the 
case when the same type of SCM and iron oxide mineral were under 
investigation (see Table 1). This fact leads to ambiguity in the selection 
of ‘representative’ protolysis constants and uncertainty in the further 
development of self-consistent surface complexation databases. In other 
words, there now exists an impasse in the integration of the experi-
mental data scattered in different studies into comprehensive SCM 
frameworks that reconcile the full community-wide data. 

In light of this challenge, this study aims at integrating and modeling 
digitized and compiled potentiometric titration data, reported following 
the Findable, Accessible, Interoperable, Reusable (FAIR) data principles 
[37], through the Lawrence Livermore National Laboratory Surface 
Complexation/Ion Exchange (L-SCIE) database [38]. The surface 

Table 1 
Diffuse double layer surface complexation model protolysis constants and 
site densities for ferrihydrite reported in the literature. Data from RES3T 
database [35,36].   

1st protolysis constant 
(pKa1) 

2nd protolysis 
constant (pKa2) 

Site density 
(sites⋅nm¡2) 

1a 6.09  7.38  2.2583 
2b 6.51  9.13  0.0203 
3c 7  9.2  7.0903 
4d 7.01  7.86  0.7300 
5e 7.29  8.93  2.2553 
6f 7.5  10.2  9.9966  

a [34]; b[33]; c[29]; d[30]; e[31]; f[32]. 
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complexation modeling focuses on fitting compiled community data for 
each individual iron oxide mineral (i.e., ferrihydrite, goethite, hematite, 
and magnetite) to produce representative protolysis constants that ac-
count for all potentiometric titration data collected from multiple 
literature sources. In addition, the effect of surface site density (SSD) on 
protolysis constants is analyzed by means of sensitivity analysis, as 
variation of SSD used in proton adsorption modeling is known to be a 
major cause for deviations in reported protolysis constants [24]. It is 
expected that the modeling framework described herein and results 
obtained from the present study can reconcile large amounts of poten-
tiometric titration data. By providing the most appropriate protolysis 
constants (and associated parameter uncertainties), this study provides 
improved constraints to be utilized in downstream SCM development, 
such as in the modeling of radionuclide sorption onto iron oxide min-
erals in nuclear waste repository performance assessment. The frame-
work also provides a path forward for developing self-consistent, 
comprehensive, and updateable FAIR surface complexation databases 
for reactive transport modeling more broadly. 

2. Surface complexation modeling framework 

As part of this effort, a surface complexation modeling framework 
was developed. This framework consists of two major components: (1) a 
community sorption database and workflow (i.e., L-SCIE [38]) that 
provides FAIR community potentiometric titration data and (2) a 
potentiometric titration modeling workflow that automates fitting of 
protolysis constants for selected SCM type (e.g. NEM, DDLM, etc.) to 
community potentiometric titration data. 

2.1. The L-SCIE database and workflow 

The L-SCIE database and workflow was developed with the aim of 
compiling raw community sorption data which can, in turn, be used in 
downstream SCM database development. The L-SCIE database contains 
not only raw sorption data, including potentiometric titration data 
digitized from the literature, but also relevant metadata (e.g., experi-
mental conditions), and is stored as a Microsoft Access format [38]. In 
order to use the compiled raw sorption data, the raw data are processed 

through a workflow of unit conversions which include error propaga-
tion. Once data “unification” has been completed, the community data 
can be filtered based on the type of mineral, adsorbate, etc. for down-
stream processing (e.g., surface complexation modeling). In this study, 
potentiometric titration data for four iron oxide minerals (i.e., ferrihy-
drite, goethite, hematite, and magnetite) were evaluated. It should be 
noted that the data used in this study (Table 2) was extracted from the L- 
SCIE database and may not reflect all available data in the literature. 
Nevertheless, since our SCM framework is based on the FAIR data 
principle, one can easily refit the protolysis constants as new data 
become available. 

2.2. The potentiometric titration data workflow 

A workflow was developed to model the potentiometric titration 
data contained in the L-SCIE database. The workflow was coded in Py-
thon and coupled to PHREEQC [12] for surface complexation modeling 
and PEST [89] for data fitting and parameter (protolysis constants) 
estimation. The details of the workflow are shown in Fig. 1. First, the 
community data prepared from the L-SCIE database is imported into 
Python. Since a single reference may include multiple datasets 
depending on experimental conditions (e.g., ionic strength), all data are 
binned by dataset. PHREEQC is first called to perform a charge balance 
on each datapoint by adjusting the concentration of background elec-
trolyte concentration (e.g. Na+, Cl-) and to enhance the stability of 
follow-on geochemical fitting routines. PHREEQC/PEST input files for 
each dataset are then generated, PHREEQC/PEST fitting is performed 
for each dataset separately, and simulation results are exported into a 
summary file. Finally, weighted arithmetic mean pKa1 and pKa2 values of 
all datasets are calculated to produce ‘representative’ average protolysis 
constants (see the relevant description in Section 2.3). 

2.3. Calculation of weighted arithmetic mean protolysis constants 

Once the PHREEQC/PEST fitting is performed for each dataset, the 
PEST code produces two protolysis constants (pKa1 and pKa2) and 
associated 95% confidence intervals (±2σ) for each dataset. In this 
study, the weighted arithmetic mean was used to calculate ‘represen-
tative’ average pKa values for the entire community dataset. Weighted 
average (xwav) is the best estimation for the true x value when there are 
N measurements ofx with corresponding uncertainties (i.e., x1 ± σ 1, …, 
xN ± σ N), and can be calculated by the following Eqs. (5) and (6) 
[90,91]: 

xwav =

∑
wixi

∑
wi

(5)  

wi =
1
σ2

i
(6) 

where xi denotes ith measurement of x and wi represents the corre-
sponding weight which is the reciprocal square of uncertainty of ith 

measurement (σi). Finally, uncertainty in the weighted average can be 
calculated by Eq. (7) [90]: 

Table 2 
Description of iron oxide potentiometric titration data used in this study.a.  

Iron oxide 
minerals 

Data 
count 

No. of 
datasets 

No. of 
references 

pH 
range 

Ferrihydrite 1,119 40 12 2.7 – 
11.7 

Goethite 1,982 79 23 3.0 – 
11.0 

Hematite 1,702 61 16 2.7 – 
11.1 

Magnetite 301 14 8 2.3 – 
12.0  

a Potentiometric titration data included in the L-SCIE database and evaluated 
here include: 1) ferrihydrite: [25–27,39–47], 2) goethite: [18,25,26,48–67], 3) 
hematite: [59,67–81], and 4) magnetite: [51,82–88]. 

Fig. 1. Surface complexation modeling workflow for potentiometric titration data.  
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σwav =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑
wi(xi − xwav)

2

(N′
− 1)

∑
wi

N ′

√
√
√
√ (7) 

where N’ denotes the number of non-zero weights. In our case, total 
number of measurements, N, is equal to total number of datasets, xi 
corresponds to pKa1 or pKa2 from the ith dataset and σi is the uncertainty 
of pKa1 or pKa2 from the ith dataset. 

2.4. Sensitivity analysis of surface site density 

In this study, surface site densities (SSD) of iron oxides were obtained 
using a crystallographic approach [92,93]. Crystallographic literature 
data for ferrihydrite, goethite, hematite and magnetite were collected 
and evaluated, considering only measurements at T = 25 ◦C and atmo-
spheric pressure [94–97]. Ferrihydrite surface planes were predicted by 
Bravais-Friedel-Donnay-Harker (BFDH) morphology calculations [98] 
using the Mercury software code [99] whereas for goethite the most 
common faces mentioned in the literature where used [24,100,101]. 
According to literature, the minerals hematite and magnetite mostly 
occur in certain crystal habits [100,101]. The faces of these crystal forms 
were used for the SSD estimation. 

Natural iron(hydr-)oxides are not expected to form perfectly crys-
tallized, single habits, but rather multiple intergrown crystallites. 
Known minor crystal faces, which occur only occasionally and with 
small areal ratios, were omitted. Using crystallographic data, the posi-
tions of interfacial oxygen atoms were calculated for each surface plane 
on the most stable termination with octahedral iron-oxygen coordina-
tion. There, surface unit cells delimited by four crystallographically 

identical oxygen atoms were defined and the number of all surface ox-
ygen atoms within the unit cell was determined. As surface oxygen po-
sitions are expected to be identical to the positions of > Fe-OH binding 
groups at the iron(hydr-)oxide surface, the SSDs were calculated for 
each plane using the outermost oxygen atoms. A distinction was made 
between singly (≡FeOH) and doubly (≡Fe2O) coordinated groups. For 
an overall SSD value, the weighted mean using the relative area ratios 
was determined (see Table 3). 

The crystallographically-derived SSDs for singly coordinated groups 
on ferrihydrite, goethite, hematite, and magnetite are 6.53, 6.60, 5.83, 
and 4.56 sites⋅nm− 2, respectively. These values were used in the esti-
mation of protolysis constants. However, natural minerals likely include 
irregularities that may cause variation in SSD values. For this reason, 
sensitivity analysis of SSD was also conducted to examine the effect of 
SSD on pKa estimation. The SSDs applied in the sensitivity analysis 
ranged from 3 to 10 sites⋅nm− 2 (i.e., 3, 5, 7, and 10 sites⋅nm− 2). An SSD 
of 2.31 sites⋅nm− 2, suggested by Dzombak and Morel [10] for hydrous 
ferric hydroxide, has previously been recommended for use in esti-
mating binding constants on many types of minerals [6]. For this reason, 
many studies have employed this SSD [102]. In our sensitivity analysis, 
2.31 sites⋅nm− 2 was also included considering the fact that the value has 
been conventionally used in a number of surface complexation modeling 
efforts. 

3. Results and discussion 

3.1. Diffuse double layer model protolysis constants of ferrihydrite, 
goethite, hematite, and magnetite 

The iron oxide pKa values were estimated by fitting the community 
potentiometric titration data using the SCM framework described above. 
The DDLM was initially adopted to describe the electrical double layer, 
and SSDs obtained from the aforementioned crystallographic approach 
were used. The resulting iron oxide pKa values (Eqs. (3) and (4)) are 
summarized in Table 4. In the table, average pKa values reported in the 
RES3T database [35,36] are also included for comparison. These values 
are simply an average of all reported values without any evaluation of 

Table 3 
Surface site densities of ferrihydrite, goethite, hematite, and magnetite.  

Iron oxide 
mineral 

Crystallographically- 
Derived SSD 
(sites⋅nm¡2) 

Iron 
oxide 
mineral 

Crystallographically- 
Derived SSD 
(sites⋅nm¡2) 

Ferrihydrite  6.53 Hematite  5.83 
Goethite  6.60 Magnetite  4.56  

Table 4 
Diffuse double layer model protolysis constants for iron oxides as a function of surface site density.  

Iron oxides SSD (sites⋅nm¡2) pKa1
†† pKa2

†† R value RES3T pKa1 RES3T pKa2 

Ferrihydrite 2.31 6.7 ± 0.4 8.7 ± 0.6  0.916 7.2 ± 0.2 9.0 ± 0.2 
3 6.5 ± 0.4 8.7 ± 0.6  0.916 
5 6.2 ± 0.4 8.9 ± 0.6  0.915 
6.53† 6.1 ± 0.4 9.0 ± 0.6  0.915 
7 6.1 ± 0.4 9.0 ± 0.6  0.915 
10 5.9 ± 0.4 9.2 ± 0.6  0.916 

Goethite 2.31 6.9 ± 0.8 9.1 ± 0.7  0.880 7.1 ± 0.5 9.9 ± 0.8 
3 6.7 ± 0.7 9.2 ± 0.7  0.877 
5 6.4 ± 0.7 9.4 ± 0.7  0.868 
6.60† 6.2 ± 0.7 9.5 ± 0.6  0.867 
7 6.2 ± 0.7 9.6 ± 0.6  0.867 
10 6.0 ± 0.7 9.7 ± 0.6  0.868 

Hematite 2.31 7.6 ± 0.7 9.2 ± 0.8  0.875 6.8 ± 0.6 9.0 ± 0.9 
3 7.3 ± 0.7 9.3 ± 0.9  0.877 
5 6.9 ± 0.8 9.4 ± 0.8  0.874 
5.83† 6.8 ± 0.8 9.4 ± 0.8  0.872 
7 6.7 ± 0.8 9.5 ± 0.8  0.873 
10 6.5 ± 0.8 9.6 ± 0.8  0.872 

Magnetite 2.31 6.2 ± 0.2 7.3 ± 0.2  0.922 5.1 ± 0.8 8.3 ± 1.2 
3 6.1 ± 0.2 7.5 ± 0.4  0.923 
4.56† 5.9 ± 0.2 7.4 ± 0.6  0.935 
5 5.8 ± 0.2 7.5 ± 0.6  0.934 
7 5.7 ± 0.3 7.6 ± 0.7  0.940 
10 5.5 ± 0.3 7.6 ± 0.7  0.944  

† Crystallographically-derived surface site density (used as reference case). 
†† Reported uncertainties are mean weighted ± σ of the fitted pKa values (Eq. (7)). Note that the RES3T pKa uncertainties are simply the standard deviations of the 

values reported in the database. 
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Fig. 2. Potentiometric titration data of ferrihydrite (blue), modeling data using weighted mean DDLM pKa values (orange), and DDLM fits obtained for individual 
datasets (black). All models used the crystallographically-derived surface site density (Table 4). Error bars represent estimated data uncertainties at one stan-
dard deviation. 
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the source (i.e., data redundancy, provenance, etc.). 
Sverjensky [28] theoretically calculated the protolysis constants of 

minerals based on a TLM. The calculated protolysis constants were 
found to increase in the order: magnetite < ferrihydrite < goethite <
hematite. As shown in Table 4, protolysis constants calculated in the 
present study, using crytallographically-derived SSD values for each 
mineral, have a similar tendency. It should be noted that pKa2 of he-
matite, calculated in our model, is slightly lower than that of goethite, 
and differences in pKa values of ferrihydrite, goethite, and hematite are 
not all statistically significant. However, pKa values of magnetite are 
clearly lower than the three other iron oxide minerals. 

It is plausible that the order of protolysis constants of iron oxides is 
highly correlated to their respective thermodynamic stabilities. In other 
words, the pKa values of iron oxides increase with increasing thermo-
dynamic stability of the solid phase: ferrihydrite < goethite ≤ hematite 
[24,103–109]. As stated above, pKa2 of hematite is slightly lower than 
goethite while pKa1 of hematite is higher than goethite. Thus, the order 
of protolysis constants of goethite and hematite is ambiguous. Interest-
ingly, the thermodynamic stabilities of goethite and hematite are also 
similar [24,104], and relative stability of goethite to hematite (with 
water) is uncertain as well [110,111]. The difference in iron oxidation 
state of magnetite and the three other oxides, i.e., Fe(II, III) for 
magnetite and Fe(III) for ferrihydrite, goethite, and hematite, seems to 
be a major reason for magnetite having distinct protolysis constants. 

Ferrihydrite potentiometric titration data, model fits using weighted 
mean pKa values, and fits to individual datasets are shown in Fig. 2. In 
general, the fits to individual datasets outperform the fits using weighted 
mean pKa values. This suggests that sample characteristics likely vary 
among the various datasets and yield different surface charging prop-
erties. Nevertheless, with the exception of a few datasets, a single set of 
weighted mean pKa values can represent the community potentiometric 
titration data reasonably well. 

In the case of some datasets, the fitted model did not reproduce the 
experimental data. The poor fit to the data is, in most cases, indicative of 
erroneous reporting of potentiometric titration data. For example, 
Antelo et al. [46] reported potentiometric titration data in Fig. 1 of their 
publication (afpmagl10) that reached nearly 6000 μC⋅cm− 2 at low pH 
and 0.5 M KNO3. This is more than two orders of magnitude higher than 
most reported values and likely represents a typographical error in the 
publication. Importantly, given that our mean value is weighted by the 
associated parameter uncertainty (see Eq. (7)), the erroneous data (i.e., 
[46]) do not significantly impact the weighted mean pKa values for 
ferrihydrite. If we simply remove those datasets (i.e., afpmagl10_f1a, 
afpmagl10_f1b, and afpmagl10_f1c) from our analysis, the resulting pKa1 
and pKa2 for ferrihydrite is 6.1 and 9.0, respectively, which is identical 
to the values reported in Table 4. Similarly, Trivedi and Axe [26] re-
ported unusually high surface charges on ferrihydrite (up to 400 
μC⋅cm− 2). However, the authors acknowledged that the high surface 
charging is likely the result of the unusually low reported BET surface 
area (36.6 m2⋅g− 1) compared to ~ 600 m2⋅g− 1 that is commonly re-
ported for this amorphous mineral [10]. The modeling results for all iron 
oxides and SCM types are reported in the Supplementary Material. 

3.2. Effect of type of electrical double layer 

In order to build a self-consistent SCM reaction database, protolysis 
constants should be estimated using a consistent SCM type (e.g., NEM, 
DDLM, or constant capacitance model (CCM)) which, in turn, is identical 
to that used for downstream sorption modeling. In the present study, we 
examined how the SCM type affects the protolysis constants and eval-
uated how well each SCM type reproduces the potentiometric titration 
data. The modeling was conducted for four iron oxides (i.e., ferrihydrite, 
goethite, hematite, and magnetite) and three types of SCM: NEM, DDLM, 
and CCM. 

Surface complexation modeling results for ferrihydrite using the 
NEM and CCM are illustrated in Figures S1 and S3, respectively. In 

contrast to DDLM (Fig. 2), the NEM rarely reproduced experimentally 
obtained potentiometric titration data of ferrihydrite. The most 
remarkable feature observed in the NEM fits was that the modeled 
surface charge rapidly increased or decreased at low and high pH (e.g., 
Fig. 3). Since the NEM neglects the impact of an electric double layer and 
associated surface potential, the model cannot address repulsion and/or 
attraction effects between proton and surface induced by surface charge 
build-up. Therefore, the shape of the NEM fitting is mainly affected by 
the activity of proton in solution. As a result, the NEM has relatively 
steep slopes in comparison to the DDLM (e.g., Fig. 3), and pKa1 of the 
NEM is lower than that of the DDLM, while pKa2 of the NEM is higher 
than that of the DDLM (Table 5). The CCM is effective at reproducing 
most of the potentiometric titration data. However, it was relatively less 
effective for magnetite potentiometric titration data. In addition, as is 

Fig. 3. Comparison of modeling results using the NEM, CCM, and DDLM for a 
single ferrihydrite dataset. The gmm97_f3 refers to a potentiometric titration 
dataset reported in [41] and performed on 10 g/L ferrihydrite in a 0.001 M 
NaCl solution. 

Table 5 
Estimated protolysis constants of iron oxide minerals with different surface 
complexation models using crystallographically estimated surface site densities 
(Table 3).  

Iron oxides SCM 
type 

pKa1 pKa2 (pKa1 þ

pKa2)/2 
Capacitance 

Ferrihydrite NEM 3.51 ±
0.65 

11.03 ±
0.57 

7.27 ± 0.43 – 

DDLM 6.09 ±
0.40 

9.00 ±
0.56 

7.55 ± 0.34 – 

CCM 6.41 ±
0.38 

9.78 ±
0.39 

8.10 ± 0.27 1.11 ± 0.52 

Goethite NEM 5.06 ±
1.08 

9.96 ±
1.10 

7.51 ± 0.77 – 

DDLM 6.23 ±
0.69 

9.54 ±
0.63 

7.89 ± 0.47 – 

CCM 6.93 ±
0.37 

10.90 ±
0.33 

8.92 ± 0.25 0.90 ± 0.18 

Hematite NEM 3.99 ±
0.61 

10.83 ±
0.61 

7.41 ± 0.43 – 

DDLM 6.84 ±
0.75 

9.42 ±
0.79 

8.13 ± 0.54 – 

CCM 7.25 ±
0.39 

10.94 ±
0.44 

9.10 ± 0.29 1.07 ± 0.22 

Magnetite NEM 4.17 ±
0.70 

8.73 ±
1.46 

6.45 ± 0.81 – 

DDLM 5.85 ±
0.22 

7.44 ±
0.60 

6.65 ± 0.32 – 

CCM 6.06 ±
0.37 

6.07 ±
0.36 

6.07 ± 0.26 2.08 ± 1.46  
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well known, the CCM performs better in high ionic strength solutions 
and tends to fail at low ionic strength (e.g., Fig. 3) [18,112]. Theoreti-
cally, the CCM is valid for low interfacial potentials and, as a result, is 
most applicable to high ionic strength solutions (i.e., greater than 0.01 
M) [18]. 

The type of SCM also significantly affects the quality of fit. Fig. 4 
illustrates the fit quality for each SCM type and mineral phase in the 
form of normalized histograms as a percent difference between the 
experimental and modeled surface charge (e.g. a 10% value on the x-axis 
represents a 10% difference between experimental and modeled surface 
charge). The interquartile ranges (IQRs) of weighted residual data ob-
tained from the models using each SCM type are also reported. The 
histograms exclude outliers where the data points fall below Q1 (first 
quartile of the data) – 1.5 × IQR or above Q3 (third quartile of the data) 
+ 1.5 × IQR. 

As shown in Fig. 4, the IQR of the NEM is always greater than the IQR 
of the DDLM and CCM. This implies that the fit quality of DDLM and 
CCM is overall better than that of the NEM. Although the NEM can 
effectively be used to predict the adsorption behavior of various ad-
sorbates (e.g., [8]), it fails to accurately reproduce mineral surface 
protolysis. In the case of adsorbate sorption systems, the number of 
surface sites is expected to be significantly higher than the amount of 
adsorbate. Therefore, the effect of charge build-up due to adsorbate 
sorption might be negligible. In the surface protolysis case, however, a 
high proportion of surface sites is protonated or deprotonated, making 
the charge build-up non-negligible. 

3.3. Effect of surface site density on protolysis constants 

As summarized in Table 4 and Fig. 5, the value chosen for SSD 
significantly affects the modeled pKa values for iron oxides. The most 
remarkable observation was that pKa1 decreased with increasing SSD, 
while pKa2 increased with increasing SSD. This systematic tendency was 

Fig. 4. Normalized histograms as a percent difference between the experimental and modeled surface charge for NEM, DDLM, and CCM models of (a) ferrihydrite, 
(b) goethite, (c) hematite, and (d) magnetite. The bin size of each histogram is equivalent to one tenth of IQR. 

Fig. 5. Diffuse double layer model protolysis constants for iron oxides as a 
function of surface site density. Large symbols represent the protolysis con-
stants obtained with crystallographically-derived surface site density. 

S.-C. Han et al.                                                                                                                                                                                                                                  



Journal of Colloid And Interface Science 648 (2023) 1015–1024

1022

consistent regardless of the type of iron oxide mineral and is in good 
agreement with other studies [18,74,79]. 

The quality of DDLM fit (R value) derived based on each SSD value is 
given in Table 4. The R value, equivalent to a weighted Pearson corre-
lation coefficient [38], was calculated excluding outliers discussed in 
Section 3.2. As evident in Table 4, no clear correlation was found be-
tween R value and SSD, and no obvious maximum was obtained for R 
value. The observed sensitivity of SSD to quality of data fitting is in good 
agreement with other studies by Christl and Kretzschmar [74] and 
Hwang and Lenhart [79]. Since the data fitting quality is insensitive to 
SSD while modeled pKa values are not, fitting the potentiometric titra-
tion data by optimizing arbitrary SSD might impede the accuracy in 
determining pKa values. In similar, Christl and Kretzschmar [74] noted 
that fitting the surface titration data would not be recommended for 
determining SSD. 

Importantly, the results emphasize the need for consistency in SSD, 
pKa values, and SCM type in any self-consistent SCM database. The 
framework presented here provides an approach to developing such a 
self-consistent database using the principles of FAIR community data. 

4. Conclusions 

In the present study, the community data-based surface complexa-
tion modeling framework was successfully developed and was utilized 
for iron oxide potentiometric titration systems to produce ‘representa-
tive’ protolysis constants that account for all potentiometric titration 
data collected from multiple literature sources. In addition, the influence 
of SCM type and effect of SSD on potentiometric titration modeling were 
examined. 

Simulation results showed that the protolysis constants produced by 
the potentiometric titration data workflow can reproduce most of the 
experimental data with reasonable accuracy. The calculated protolysis 
constants showed a characteristic trend according to the type of iron 
oxide in the following order: magnetite < ferrihydrite < goethite <
hematite. In particular, pKa values of magnetite were significantly lower 
than that of the other three iron oxides, and the difference in iron oxi-
dations states between magnetite and the other oxides is considered to 
be the most reasonable explanation for this feature. The order of pro-
tolysis constants of ferrihydrite, goethite, and hematite appear to be 
correlated with their thermodynamic stabilities. 

SCM type had considerable effects on not only calculated pKa values 
but also the quality of the model fit. Based on our ferrihydrite potenti-
ometric titration case, pKa values obtained using the NEM were signif-
icantly different from those obtained using the DDLM and CCM. In 
addition, typically, NEM showed markedly poor fit quality compared to 
the DDLM or CCM, and rarely reproduced the experimental data. SSD 
values used in the models also had a significant impact on the calculated 
pKa values. 

This study started with the aim of the construction of a self-consistent 
SCM database. Although enormous studies have shed light on the sur-
face chemistry of oxide minerals (e.g., [17,25–28]), it was found that 
there was an impasse in the integration of the experimental data scat-
tered in different studies and in obtaining a consensus among those 
studies. Since the different studies were based on divergent experi-
mental conditions, it was required to develop a comprehensive SCM 
framework, which can reconcile the full community-wide data, in order 
to produce ‘representative’ reaction constants to be utilized in down-
stream sorption modeling. Until now, however, only a few limited 
studies have focused on this goal (e.g., [10,11,38]). 

The work presented herein demonstrates a modeling approach to 
reconcile large amounts of potentiometric titration data for iron oxides. 
In addition, the present work shows that the application of community 
data-driven modeling can additionally identify erroneous datapoints. 
This feature can be investigated to increase the robustness and reliability 
of databases and/or surface complexation models. It is expected that the 
present study could help to bring consensus to the development of SCMs 

for iron oxide sorption systems by enabling the appropriate choice of 
protolysis constants for the quantification of mineral-adsorbate in-
teractions. The results emphasize the need for consistency in SSD, pKa 
values, and SCM type in any self-consistent SCM database. The frame-
work presented here provides an approach to developing such a self- 
consistent database using the principles of FAIR community data. The 
framework also provides a path forward for developing self-consistent, 
comprehensive, and updateable surface complexation databases for 
nuclear waste disposal performance assessment and reactive transport 
modeling more broadly. 
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