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5
Mathematical Modelling
of Experimental Data

Tracers are applied in groundwater systems mainly: (i) for the quantitative deter-
mination of rock and/or flow properties (e.g. water velocity, hydraulic conductivity,
dispersivities, porosities, transit time, volume of water); and (ii) for the calibration
or validation of numerical flow and transport models. The estimation of parameter
values from tracer experiments is only possible if an adequate mathematical model is
used: the selected model must reflect the tracer transport and tracer behaviour in the
system being studied. Some of problems related to model selection are discussed by, for
instance, Maloszewski and Zuber (1992b, 1993). The definitions used here for tracer
modelling are summarized in Chapter 2. The present chapter gives the mathematical
description of artificial tracer transport in homogeneous and heterogeneous ground-
water systems, in surface water (rivers and streams), as well as in double-porous media,
such a fissured rocks, the unsaturated zone and rivers (streams) with stagnant water
zones. Furthermore, the lumped-parameter approaches used for quantitative interpre-
tation of environmental tracer data are discussed. Additionally, some examples of using
those models are presented.

5.1 Artificial tracer (Ideal) under saturated
flow conditions

5.1.1 Transport equations

5.1.1.1 3D equations

In an aquifer containing only mobile water, the transport of nonreactive and non-
decaying solutes in groundwater is described by a three-dimensional (3D) dispersion
equation in which the dispersion has a tensor form and the water flow velocity a vector
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form (Bear, 1961; Scheidegger, 1961). For an ideal tracer, this transport equation – here
referred to as the general 3D transport equation – has the following form:
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where (x, y, z) is an arbitrarily chosen coordinate system; C is the concentration of
solute in the water [ML−3]; x, y, z are the flow distances [L], in the directions (x, y, z),
respectively; t is time [T]; vx, vy, vz [LT−1] are the x-, y-, z- components of the velocity
vector (v), and Dij [L2T−1] (with i, j = x, y, z) are the components of the dispersion
tensor (D):
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(5.7)

where Dm is the molecular diffusion coefficient of tracer in free water [L2T−1]; τ is the
tortuosity factor of the porosity matrix [−]; and DL and DT are the longitudinal and
transverse dispersion coefficients [L2T−1]. DL and DT are equal to (Scheidegger, 1961):

DL = αL v (5.8)

DT = αT v (5.9)

where αL and αT are, respectively, the longitudinal and transverse dispersivities [L]
of the hydrodynamic dispersion, which characterize the heterogeneity of the porous
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Figure 5.1 Schematic presentation of the two transport processes – convection and dispersion –
in the 3D case. The dashed line shows the concentration distribution of an ideal tracer injected
instantaneously into the groundwater at beginning of the stream line.

medium. The mean water velocity (v) is equal to:

v =
√

v2
x + v2

y + v2
z (5.10)

A schematic presentation of both possible transport processes – convection and disper-
sion, both longitudinal and transverse – is shown in Figure 5.1.

The solution to the general transport Equation (5.1) can only be found by applying
numerical techniques. The solution obtained using finite difference methods (FDM) is
used in the computer software MODFLOW, whereas that obtained using finite element
methods (FEM) is used in, for instance, FEFLOW.

In a granular porous medium that is assumed to be homogeneous, the flow lines are
parallel; the x-axis is then taken to be permanently parallel to the flow lines (Figure 5.2).
In this situation the components of the velocity vector reduce to v = vx, vy = vz = 0,
and the dispersion tensor (5.2–5.57) is considerably simplified (5.12–5.14). The 3D
transport Equation (5.1) then has following form for steady-state flow – this is here
termed the specific 3D transport equation:
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Figure 5.2 Schematic presentation of the coordinate system (x, y, z), with the x-axis parallel to
the flow direction.
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where Dxx, Dyy and Dzz are now given by:

Dxx = DL + Dm

τ
(5.12)

Dyy = DT + Dm

τ
(5.13)

Dzz = DT + Dm

τ
(5.14)

If the water flow velocity is greater then approx. 0.1 m/day, the molecular diffusion is
negligibly small in comparison to the hydrodynamic dispersion; then (5.6) reduces to
Dxx = DL and Dyy = Dzz = DT.

5.1.1.2 2D equations

If a tracer is injected through the whole thickness of a homogeneous aquifer, for example
into a fully penetrating well (Figure 5.3), then the tracer already vertically well mixed
in the injection well (x = 0, y = 0) and the vertical concentration gradient is equal to
zero, that is

∂C

∂z
= 0 (5.15)

Taking (5.15) into account and assuming (a) that the x-axis is parallel to the flow
direction and (b) that the molecular diffusion is negligibly small, the transport
Eq. (5.5) can be reduced to the following specific two dimensional (2D) one:
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(5.16)

Figure 5.3 Schematic presentation of tracer injection performed into fully or partially penetrating
wells.
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Equation (5.16) describes tracer transport in the horizontal plane along the flow
direction (x-axis) when the tracer is already completely mixed in the injection well
through the vertical profile of the aquifer.

The situation is different when the tracer is injected into a partially penetrated well
(Figure 5.3). Then it is necessary to estimate xwm, the flow distance from the well within
which the tracer will become vertically well mixed as the result of transverse dispersion.
xwm is given by following formula:

xwm = (H − HF )2

2αT
(5.17)

where H [L] is the mean thickness of the aquifer and HF is the length of the filter in the
injection well. For flow distances larger then xwm (x > xwm), the 2D Equation (5.16)
can be applied for parameter estimation.

5.1.1.3 1D equations

In some experiments, transverse dispersion can be neglected in both the y and z
directions; an example is when the tracer is injected into the water flowing into a column
throughout the whole cross-section of the column perpendicular to the flow direction.
If the x-axis is taken along the column axis (flow direction), then the concentration
gradients in the y and z directions both equal zero:

∂C

∂y
= ∂C

∂z
= 0 (5.18)

The same situation can be assumed for transport in streams or rivers, when the tracer
is injected throughout the whole cross-section of the stream. When the x-axis is then
taken parallel to the flow direction, Equation (5.16) is reduced to the 1D transport
equation:

DL
∂2C

∂x2
− v

∂C

∂x
= ∂C

∂t
(5.19)

Maloszewski and Zuber (1990) note that this equation can also be applied in radial-
convergent flow (for instance, in a combined pumping and tracer experiment), provided
that the dispersion parameter, PD = DL/(vx) = αL/x, is sufficiently small (PD < 0.1).

5.1.2 Solutions to the transport equations

In most practical experiments, the injection of the tracer mass M into the water flux
entering the system is performed instantaneously (tinj ≈ 0), which is mathematically
described by the Dirac function δ(t). The 3D transport equation is in practice hardly
ever applicable; for its theoretical solution, see Zuber (1970).
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5.1.2.1 2D solution

The initial and boundary conditions for 2D transport in the horizontal (x, y) plane
are as follows (Lenda and Zuber, 1970), assuming instantaneous injection in a fully
penetrating well:

C(x = 0, y = 0, t) = M

nH
δ(t) δ (x) δ(y) (5.20)

C(x, y, t = 0) = 0 (5.21)

lim C(x, y, t) = 0
(x, y) → ∞ (5.22)

where n is the effective water porosity [−] and δ(x) and δ(y) are Dirac space functions
[1/L] in the x and y directions respectively.

The solution to Equation (5.16) with boundary and initial conditions (5.20–5.22) is
(Lenda and Zuber, 1970):

C(x, y, t) = M

nH

x

4πvt2
√

DL DT
exp

[
− (x − vt)2

4DL t
− y2

4DTt

]
(5.23)

This solution describes the horizontal transport of a tracer mass M that was injected
instantaneously into a fully penetrating well situated at the origin (0, 0) of the coordinate
system (x, y). Equation (5.23) has three parameters (v, DL, DT), the values of which
need to be estimated. These parameters can only be found when the tracer experiment
is performed in a test field which has observation wells situated perpendicular to the
flow direction (Figure 5.4).

Figure 5.4 Test field in the horizontal plane (x, y), with injection and observation wells situated
perpendicular to the flow direction.
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Figure 5.5 Left: Time distribution of tracer concentration C(t), instantaneously injected, observed
in well 0 (Figure 5.4). Right: Space (transverse) distribution of tracer concentration C(y) observed in
the wells: 2′, 1′, 0, 1, 2 (Figure 5.4) sited perpendicular to the flow direction (y-axis) measured at
time t = tm after injection.

Consider first the tracer concentrations measured in the observation well 0
(x = 0, y = 0) as a function of t, the time after injection (Figure 5.4). The so-called time
distribution of the tracer concentration (5.23) then simplifies to:

C(t) = Cm

( tm

t

)2

exp

[
− (x − vt)2

4DL t
+ (x − vtm)2

4DL tm

]
(5.24)

where Cm and tm are the peak concentration and the time of the appearance of
that concentration, taken from the tracer concentrations measured in the well 0
(Figure 5.5).

Equation (5.24) has two parameters (v, DL), the values of which can easily be cal-
culated from experimental data obtained in well 0 (see Section 5.1.3). To calculate the
transverse dispersion coefficient DT, the tracer concentrations measured in the wells
perpendicular to the flow direction (wells 2, 1, 0, 1′, 2′ in Figure 5.4) have to be measured
at time t = tm. Then the transverse distribution, the so-called space distribution, of the
tracer concentration can be constructed as shown in Figure 5.5 (right). The transverse
distribution of the tracer concentration C(y) observed at the flow distance (x) at time
t = tm after injection is described by following equation:

C(y) = Cm exp

[
− y2

4DTtm

]
(5.25)

with the transverse dispersion coefficient (DT) now being the only parameter that needs
to be obtained.

The application of equations (5.24) and (5.25) to the tracer concentrations measured
in the observation wells shown in Figure 5.4 enables the three required parameters
(v, DL, DT) to be determined under natural flow conditions.
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5.1.2.2 1D solution

For tracer experiments performed in a column, or for combined pumping-tracer exper-
iments (radial flow; Figure 5.6), the 1D transport Equation (5.9) is applicable. When the
tracer is injected instantaneously, the initial and boundary conditions are as follows:

C(x = 0, t) = M

Q
δ(t) (5.26)

C(x, t = 0) = 0 (5.27)

lim C(x, t) = 0 (5.28)

x → ∞

where M [M] is the mass of tracer injected and Q [L3/T] is the volumetric flow rate
through the column (or the pumping rate in a combined pumping-tracer experiment).

With these conditions, the solution to (5.9) is as follows (Lenda and Zuber, 1970;
Kreft and Zuber, 1978):

C(x, t) = M

Q

x√
4πDL t3

exp

[
− (x − vt)2

4DL t

]
(5.29)

Here it is assumed that in a column experiment the tracer is injected at x = 0
into the water flowing into the column and measured in the water flowing out of the
column (flux–flux mode, see Kreft and Zuber, 1978), and that in a combined pumping-
tracer experiment the tracer is injected throughout the whole thickness of the aquifer
(H) on the potential (vertical) line 0 ≤ z ≤ H and measured in the pumped water.
Equation (5.29) has two parameters (v, DL), the values of which can be calculated from
experimental data obtained from the outflow (see Section 5.1.3).

One measure often used in tracer hydrology is the so-called mean transit time of
water (t0). This is defined as follows:

t0 = x

v
(5.30)

which for 1D (closed) systems is equivalent to:

t0 = V

Q
(5.31)

where V [L3] is the volume of mobile water in the system.
By applying the mean transit time (5.30) and the dispersion parameter PD:

PD = DL

vx
= αL

x
(5.32)
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Figure 5.6 Practical applications of the 1D solution to the transport equation: column experiment
(left); and combined pumping-tracer experiment (right). Q stands for the flow rate through the
column (left), and for the pumping rate (right).

the solution (5.29) can be reformulated as the so-called normalized solution (Lenda
and Zuber, 1970):

C(t) = M

Q t0

1√
4πPD (t/t0)3

exp

[
− (1 − t/t0)2

4PD t/t0

]
(5.33)

where C(t) is the theoretical tracer concentration in the outflow from the closed system
(a column or a pumping well). Equation (5.33) has two parameters PD and t0, the
second of which can be used to calculate the effective porosity (n) of the system. For
the column experiment:

n = Q t0

πr2x
(5.34)

and for a combined pumping-tracer (radial flow) experiment (Zuber, 1974; Kreft and
Zuber, 1979):

n = Q t0

πx2H
(5.35)

where x is the column length in (5.34) and the distance between the injection and
pumping wells in (5.35), r is the column radius, and H is the mean aquifer thickness.

The value of to obtained from a column experiment can be validated by comparing
the value of the porosity calculated from (5.34) with the value otherwise obtained,
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r instance by weighing the dry (md) and water saturated (ms) column:

n = ms − md

πr2x
(5.36)

For a combined pumping-tracer experiment, Equation (5.35) is the only way of deter-
mining the effective porosity.

Equation (5.33) written in dimensionless form – termed this can be with the E(t/t0)
function – was given by Lenda and Zuber (1970):

E (t/t0) = C(t)Q t0

M
= 1√

4πPD (t/t0)3
exp

[
− (1 − t/t0)2

4PD t/t0

]
(5.37)

The form of the E(t/t0) function is shown in Figure 5.7, for various values of the
dispersion parameter PD. In this figure can be seen the influence of the system’s het-
erogeneity on the shape of the tracer concentration curve: the time to reach the peak
concentration (tm/t0) decreases with increasing of PD values (increasing system hetero-
geneity). The position of the peak concentration on the time-axis (tm/t0) is related to
the dispersion parameter PD as follows:

(
tm

t0

)
=

√
1 + (3PD )2 − (3PD ) (5.38)

(It is worth noting here that the time of appearance of the peak concentration in the 2D
case (5.24) at the well situated on the x-axis (y = 0) is described by (5.23) with ‘4PD’
replacing ‘3PD’.)

Figure 5.7 Graphical presentation of the solution to the 1D transport equation, function (5.37),
given for the normalized time (t/t0), for various values of the dispersion parameter PD.
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If the volume of water in the system (VW = Q·t0) is known, and if the range of values
of PD can be estimated, then Figure 5.7 together with Equation (5.37) can be used to
plan a tracer sampling campaign and to estimate the mass of tracer that needs to be
injected. For the estimate of the mass it is also necessary to estimate the necessary peak
tracer concentration Cm = C(tm). Generally, it is sufficient for Cm to be 10–20 times
larger than the background concentration (CB) measured in the groundwater in the
area under investigation. In the worst case (the lowest E(t) curve), this rule results in:

M = ca.(10 to 20)CB × VW (5.39)

It was shown by Maloszewski and Zuber (1990) that in tracer experiments performed
in closed systems (1D cases) the relative mass recovery RR can readily be calculated as
a function of time (t):

RR(t) = Q

t∫
0

C(t)dt/M (5.40)

For the solution (5.33) found for the 1D case, RR(t) is equal to the function F(t/t0)
defined by Lenda and Zuber (1970) as:

RR(t) = F (t/t0) = 1

2

[
erfc

(
1 − t/t0√

4PDt/t0

)
+ exp

(
1

PD

)
erfc

(
1 + t/t0√

4PDt/t0

)]
(5.41)

with erfc (ω) = 1 − erf(ω), where erf(ω) is the error function defined as:

erf (ω) = 2√
π

ω∫
0

e−ε2

dε (5.42)

The form of the F(t/t0) function (5.40) is shown in Figure 5.8.

5.1.3 Estimation of the transport parameters

5.1.3.1 Combined least squares method (LSQM)

The solution of the inverse problem (i.e. the estimation of the transport parameters)
can be obtained by fitting the appropriate theoretical solutions to experimental con-
centrations using a trial-and-error procedure. For 1D experiments the solution (5.33)
is used; for 2D experiments the procedure starts by fitting (5.24) in the observation well
on the x-axis (y = 0) and ends by fitting (5.25) to the transverse distribution of tracer
concentrations.

Equations (5.24) and (5.33) can also be used in an automatic fitting procedure that
combines the least squares method with Taylor series approximation of both solutions
(Maloszewski, 1981). In both the 1D and 2D cases (in 2D, for y = 0), the solutions to
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Figure 5.8 Graphical presentation of the solution of Eq. (5.41), the relative recovery curve for
the 1D case (this is also the solution C/C0 of the 1D transport equation for continuous injection of
tracer C0), given for the normalized time (t/t0), for various values of the dispersion parameter PD.

the transport equations can be written using one common function G(a, b, t), which
has the following form:

G (a, b, t) = Cm

( tm

t

)k

exp

[
− (1 − t/b)2

4at/b
+ (1 − tm/b)2

4atm/b

]
(5.43)

where a = PD and b = t0 are the parameters to be estimated. In the 2D case (for y = 0),
k = 2; in the 1D case, k = 1.5.

Assume that N values of the concentration Ci have been measured in an experiment
for the times t = ti (i = 1, N). The fitting procedure assumes that the solution to
the inverse problem (‘best fit’) is obtained when the values of parameters (a, b) yield
the minimum value of the sum of the squared differences between the theoretical and
observed concentrations:

� =
N∑

i=1

[Ci − G (ti, a, b)]2 (5.44)

Substitution of (5.43) into (5.44) yields a quadratic equation, which cannot be directly
solved. To remedy this difficulty, (5.43) is first written as a Taylor series. Neglecting
higher derivatives, this is:

G (a, b, t) ≈ G (a0, b0, t) + ∂G

∂a
	a + ∂G

∂b
	b (5.45)
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Substitution of (5.45) into (5.44) now gives the following linear function:

� =
N∑

i=1

[εi − (βi	a + γi	b)]2 (5.46)

where:

βi = ∂G

∂a
= −Cm

(
tm

ti

)k (
b − tmti

b

)(
1 − tm/ti

4a2tm

)
exp

[
1 − tm/ti

4atm

(
b − tmti

b

)]
(5.47)

γi = ∂G

∂b
= Cm

(
tm

ti

)k (
1 + tmti

b2

)(
1 − tm/ti

4atm

)
exp

[
1 − tm/ti

4atm

(
b − tmti

b

)]
(5.48)

εi = Ci − G (a, b, ti) (5.49)

Equation (5.46) has its minimum when:

∂�

∂(	a)
= 0 (5.50)

∂�

∂(	b)
= 0 (5.51)

Solving the above equations leads finally to:

	a =
−

(
N∑

i=1
γ2

i

)(
N∑

i=1
βiεi

)
+

(
N∑

i=1
βiγi

) (
N∑

i=1
γiεi

)

(
N∑

i=1
βiγi

)2

−
(

N∑
i=1

β2
i

)(
N∑

i=1
γ2

i

) (5.52)

	b =
−

(
N∑

i=1
β2

i

)(
N∑

i=1
γiεi

)
+

(
N∑

i=1
βiγi

)(
N∑

i=1
βiεi

)

(
N∑

i=1
βiγi

)2

−
(

N∑
i=1

β2
i

)(
N∑

i=1
γ2

i

) (5.53)

The solving of the inverse problem now requires only that the values of 	a and 	b
be obtained. This is done iteratively, starting with calculation of all the N values of the
functions (5.43) and (5.47–5.49) for the arbitrary initial values a = a0 and b = b0. After
calculating 	a and 	b from (5.52) and (5.53), new values of a and b are calculated:

a = a0 + 	a (5.54)

and

b = b0 + 	b (5.55)
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The following stopping condition is used for the iteration:

∣∣∣∣	a

a

∣∣∣∣ ≤ 0.005 and

∣∣∣∣	b

b

∣∣∣∣ ≤ 0.005 (5.56)

If condition (5.56) is not fulfilled, the iteration procedure continues with the values
of (5.54) and (5.55) taken now as a0 and b0. If condition (5.56) is fulfilled, the iteration
procedure ends with last values of a, and b. This procedure allows the transport param-
eters PD and t0 to be estimated for any given set of data (ti, Ci, for i = 1, . . . N), with
the best possible mathematical accuracy.

The estimation of parameters for the 1D or 2D (y = 0) cases using the combined least
square method (LSQM) can be performed on a PC using the user-friendly software
FIELD, which is available from one of the authors (Maloszewski).

5.1.3.2 Method of moments (MM)

Parameter estimation is often carried out using the well-known method of moments
(Kreft and Zuber, 1978; Maloszewski and Zuber, 1985, 1992b; Maloszewski, 1994).
Generally, the lth moment Ml of the tracer curve C(t) is defined as:

Ml =
∞∫

0

tlC(t)dt (5.57)

which, by applying the numerical (trapezoidal) method of integration (with Ci=0 = 0),
yields:

Ml = 1

2

N+1∑
i=1

(
Ci−1tl

i−1 + Cit
l
i

)
(ti − ti−1) (5.58)

In using the method of moments in tracer hydrology, two mathematical descriptors
are always calculated: the centre of gravity t, that is the mean tracer transit time (tt):

t = tt =

∞∫
0

tC(t)dt

∞∫
0

C(t)dt

= M1

M0
(5.59)
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and the variance of the tracer concentration curve:

δ2
t =

∞∫
0

(t − t)2C(t)dt

∞∫
0

C(t)dt

= M2M0 − M2
1

M2
0

(5.60)

The calculation of the integrals in (5.59) and (5.60) requires that the tracer concen-
tration curve be obtained for a sufficiently long period – the upper limit of the integrals
is t → ∞. In practice this means that the tracer concentration has to be measured until
its value tails off and reaches the background concentration in the water. Only in this
situation can the values of the descriptors (5.59) and (5.60) be properly calculated. Even
then there is a problem in deriving the transport parameters (t0 and PD or v and αL)
from these descriptors. Only in the 1D case –, that is only if equations (5.29) or (5.33)
are satisfied – are the following well-known relationships between the mathematical
descriptors (5.59 and 5.60) and the transport parameters valid:

t0 = t or v = x

t
(5.61)

PD = 1

2

(
δt

t

)2

or αL = x

2

(
δt

t

)2

(5.62)

Unfortunately, (5.61) and (5.62) are often misused and wrongly applied in the 2D
case. It must be remembered that, although the mathematical descriptors (5.59) and
(5.60) can always be calculated when a tracer curve has been measured over a sufficiently
long period, the equations (5.61) and (5.62) are only applicable in 1D cases.

5.1.3.3 The cumulative curve method (CCM)

The cumulative curve method was developed by Fried and Combarnous (1971), and
has become very popular in German-speaking countries (Käss, 2004). However, the ap-
plicability of this method in practice is strongly limited. Fried and Combarnous (1971)
developed the cumulative curve method for the 1D case, using the relative tracer recov-
ery curve, defined here by Equation (5.41). Generally, the experimental relative recovery
RR(t), called here the cumulative curve S(t), is constructed using the following equation:

S(t) = RR(t) =

t∫
0

C(t)dt

∞∫
0

C(t)dt

(5.63)

where
∞∫
0

C(t)dt is the area under the experimental curve (A).
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Figure 5.9 Presentation of the experimental tracer concentration curve C (top) and the con-
structed cumulative curve S(t) (bottom), with the estimated times, t16, t50 and t84, needed for
applying the method of the cumulative curve.

From that curve (5.63), the times t = t16, t = t50 and t = t84 are read; these are the
times for which S(t) obtains the values 0.16, 0.50 and 0.84 (Figure 5.9). These times
are then used to calculate the transport parameters using equations (5.71) and (5.72).
Unfortunately, these latter equations are very commonly misused (see Käss, 2004),
simply because the ideas behind the development used by Fried and Combarnous
(1971) have been forgotten.

Fried and Combarnous (1971) considered 1D cases (closed systems), and only in
situations in which the second term in Equation (5.41) could be neglected:

exp

(
1

PD

)
erfc

(
1 + t/t0√
4PD t/t0

)
∼= 0 (5.64)

The above condition is satisfied with sufficient accuracy if

PD ≤ 0.005 (5.65)
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and only then can (5.41) and (5.63) be simplified to the following form:

S(t) = 1

2
erfc

(
1 − t/t0√
4PD t/t0

)
= 1

2
erfc (ε(t)) (5.66)

where ε(t) is the argument of the erfc function:

ε(t) = 1 − t/t0√
4PD t/t0

(5.67)

To finally find the relationships between the parameters t16, t84 and t50 of the S(t) and
the required transport parameters, the following properties of the erfc(ε) function have
to be used. Function (5.66) obtains the values 0.16, 0.84 and 0.50 when the following
equations are satisfied:

a) S [ε(t16)] = 0.16 for:

ε(t16) = 1 − t16/t0√
4PD t16/t0

= − 1√
2

(5.68)

b) S [ε(t84)] = 0.84 for:

ε(t84) = 1 − t84/t0√
4PD t84/t0

= 1√
2

(5.69)

c) S [ε(t50)] = 0.5 for:

ε(t50) = 1 − t50/t0√
4PD t50/t0

= 0 (5.70)

Solving the above system of equations yields finally:

t0 = t50 (5.71)

and

PD = 1

8t50

(
t50 − t84√

t84
− t50 − t16√

t16

)2

(5.72)

When
√

t50 ≈ √
t84 ≈ √

t16 the above equation can be additionally simplified to:

PD = 1

8

(
t16 − t84

t50

)2

(5.73)
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The applicability of equations (5.71) and (5.72) is limited to 1D cases characterized
by very low values of the PD parameter, which corresponds to very homogeneous
systems. That condition is easy to detect from Figure 5.8, which shows the exact S(t)-
function. This figure demonstrates for different PD values the difference between time
t50, which corresponds to the line F = 0.5 and the real mean transit time of water t0.
For extremely heterogeneous media (PD = 2.0), the cumulative curve method yields
values of t50 about three times smaller than the real value of t0; for less heterogeneous
medium (PD = 0.25), it yields values of t50 about 1.33 times smaller than the real
value of t0.

5.1.4 Artificial tracer experiments in multi-flow systems

It is sometimes seen that there are multiple peaks in the tracer concentration curve in
the water flowing out of a system (Figure 5.10). This happens: (1) in karst aquifers,
when the tracer is injected into a sinkhole and observed in the springs and (2) in
heterogeneous multi-layered porous media, when the tracer is injected through the
whole thickness of the aquifer and observed in a pumping well or spring. In aquifers
such as these, the multiple peaks in the concentration curve result from tracer transport
along several flow paths that have different water flow velocities (and therefore different
transit times) and different dispersivities. The streamlines finally come together in the
outflow from the system (Figure 5.11). Figure 5.12 presents a conceptual model of flow
in those situations, which has been used to describe tracer transport in the multi-layered
porous media of an artificial wetland (Maloszewski et al., 2006b) and to describe tracer
transport between a sinkhole and a spring in a karst aquifer (Maloszewski et al., 1992b).
The model assumes that the tracer transport through the system can be approximated by
a combination of 1D dispersion-convection equations. Each flow path is characterized

Figure 5.10 A multi-peak experimental concentration curve C(t) resulting from tracer transport
on different ‘parallel’ flow paths.
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Figure 5.11 Schematic presentation of tracer transport in a multi-flow system, for a karst aquifer
(top) and for a multi-layered porous medium (bottom).

by a specific volumetric flow rate, mean transit time of water and dispersivity (or
dispersion parameter). It is assumed (a) that the mass of tracer injected is divided into
several flow paths proportional to the volumetric flow rates along those paths and (b)
that there are no interactions between the flow paths.

Figure 5.12 Conceptual model of tracer transport in multi-flow systems (multi-layered aquifer or
karst aquifer).
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The transport of an ideal tracer along the ith flow path is described by the 1D
dispersion equation:

αL ivi
∂2 Ci

∂ x2
− vi

∂ Ci

∂ x
= ∂ Ci

∂ t
(5.74)

where Ci(t) is the concentration of tracer in the outflow from the ith flow path (see
Figure 5.12), and αL i and vi are, respectively, the longitudinal dispersivity and the mean
water velocity for the ith flow path. x is the length of the flow path and t is the time after
injection.

For instantaneous injection of tracer, the solution to (5.74) reads as follows (Kreft
and Zuber, 1978):

Ci(t) = Mi

Q itoi

√
4π (PD )i (t/toi)3

exp

[
− (1 − t/toi)2

4(PD )i (t/toi)

]
(5.75)

where Q i and Mi are the volumetric flow rate and the mass of tracer transported along
the ith flow path, respectively and

(PD )i = αL i/xi (5.76)

is the dispersion parameter, where xi is the length of the ith flow path.

toi = xi

vi
= (Vm)i

Q i
(5.77)

is the mean transit time of water and (Vm)i is the mean volume of mobile water, in the
ith flow path. The model assumes that the whole injected tracer mass, M, is divided into
N portions, which enter the N flow paths proportional to the volumetric flow rates Q i :

Mi/Q i = M/Q (5.78)

where Q is the total flow rate through the system, that is the sum of the partial flow
rates:

Q =
N∑

i = 1

Q i (5.79)

The outflow tracer concentration C(t) is the flux-weighted mean concentration for
all flow paths observed in the outflow:

C(t) =
N∑

i = 1

p i Ci(t) (5.80)



P1: OTA/XYZ P2: ABC
c05 JWBK370/Liebundgut June 18, 2009 14:37 Printer Name: Yet to Come

5.1 ARTIFICIAL TRACER (IDEAL) UNDER SATURATED FLOW CONDITIONS 143

and

p i = Q i/Q = Mi/M = Ri/R =

∞∫
0

Ci(t)dt

∞∫
0

C(t)dt

(5.81)

where p i is the fraction of water flux in the i-th flow path, Ri is the partial tracer recovery
observed in the outflow of the ith flow path and R is the total recovery measured in the
outflow.

The solution (5.80), combined with (5.75) and (5.81), is called here the Multi Flow
Dispersion Model (MFDM). The parameters in the MFDM are: (1) the mean transit
time toi , (2) the dispersion parameter (PD )i, (3) the fraction of water flux (p i) for each
flow path (i) and (4) the total number of flow paths N. It must be noted here that,
due to the high number of unknowns, the calibration of the model to experimental
data cannot be done in a straightforward way. The calibration is performed stepwise
by fitting one-by-one the partial tracer concentration curves, each time subtracting
the fitted (partial) curve from the total tracer concentration curve, beginning with the
earliest peak (Maloszewski et al., 1992b, 1998, 2006a). The number of flow paths N is
then found automatically. After determining all the parameters, the partial volumetric
flow rates (Q i) and the volume of water in each flow path (Vm)i can be easily calculated
from (5.81) and (5.77) as: Q i = p i · Q and (Vm)i = Q i · toi , assuming that all the water
is mobile. Then the total volume of water in the system is given by:

Vm =
N∑

i = 1

(Vm)i (5.82)

and the mean transit time of water through the system is given by:

t0 = Vm

Q
=

N∑
i = 1

p i t0i (5.83)

For the karst aquifer, the parameter estimation is limited to determining for each
flow path the mean transport parameters (transit time and flow velocity, dispersion
parameter and dispersivity, portion of tracer transported) and deriving from these the
flow rate and volume of water for each flow path and the total volume of water in the
system (between the injection and detection sites). The values obtained for the transit
times, dispersion parameters, flow rates and volumes of water are real ones, whereas the
values of water velocity and dispersivity calculated for each flow path using (5.77) and
(5.76) are only approximations made assuming that the flow distance between injection
and detection points is for each flow path (xi) equal to the straight line distance (x)
(Figure 5.11).



P1: OTA/XYZ P2: ABC
c05 JWBK370/Liebundgut June 18, 2009 14:37 Printer Name: Yet to Come

144 CH 5 MATHEMATICAL MODELLING OF EXPERIMENTAL DATA

For the multi-layered porous medium, assuming that the porosities in each layer are
similar and equal to n, one can simply calculate the hydraulic conductivity for each
layer (ki) and the weighted mean (k), by applying Darcy’s law:

k = x2n

(	H)t0
(5.84)

ki = x2n

(	H)t0i
(5.85)

where 	H/x is the hydraulic gradient between the injection and detection wells.
Finally, knowing the hydraulic conductivity for each layer (ki), one can estimate the

mean thickness of the layer (Hi) by combining (5.81) with (5.85):

Hi = p iHk

ki
= p iH

toi

t0
(5.86)

Summarizing, in the multi-layered porous aquifer, the tracer experiment enables
the estimation of the transport parameters and hydraulic properties of the individual
layers. However, the relative position of the layers in the system is unknown.

5.1.5 Experiments in double-porosity aquifers

Mathematical models used to estimate transport and rock parameters in fissured
aquifers are well described in Maloszewski (1994). Those models assume that the
aquifer can be approximated by a system of parallel, identical fissures, equally dis-
tributed in a microporous matrix (Sudicky and Frind, 1982). The fissures have aperture
(2b) and include mobile water; in the matrix, which has the porosity (nim), there is
only stagnant (immobile) water. The ratio of fissure aperture (2b) to fissure spacing
(L) is defined as fissure (effective and/or mobile) porosity (nf). Tracer with mass (M)
is injected into the water entering the aquifer, simultaneously into all the fissures, with
flux Q. The tracer is transported in the fissures by convection (v) and dispersion (D)
and there is, at the same time, a loss (sink term) due to diffusion through the fissure
walls into the immobile water in the matrix. Figure 5.13 shows schematically an aquifer
approximated with a system of parallel fissures, and also an aquifer consisting of a
single fracture situated in an infinitely large matrix. Maloszewski and Zuber (1985)
and Maloszewski et al. (2004) have shown that when a tracer experiment is performed
over small distances, that is when the mean transit time of water through the fissures
is sufficiently short, the tracer transport can be approximated using the single fissure
approach. In practice, that assumption is realized when (Maloszewski, 1994):

to ≤ L 2

64Dp
or to ≤ (2b)2

64n2
f Dp

(5.87)
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Figure 5.13 Conceptual model of tracer transport in a fissured aquifer consisting of parallel
fractures (top), or a single fracture (bottom), with in each case a porous matrix with immobile
water.

where Dp is the effective diffusion coefficient in the immobile water in the porous
matrix and the fissure (mobile) porosity (nf) is much smaller than 1.

If this is true, then the following equations describe the transport of an ideal tracer
(Maloszewski and Zuber, 1985, 1990):

∂ C

∂ t
+ v

∂C

∂ x
− D

∂ 2C

∂ x2
− nimDp

2b

∂Cim

∂y

∣∣
y=b = 0 for 0 ≤ y < b (5.88)

∂ Cim

∂ t
− Dp

∂ 2Cim

∂ y2
= 0 for b ≤ y < ∞ (5.89)

where C(t) and Cim(t) are the tracer concentrations in mobile and immobile water,
respectively, D is the dispersion coefficient in the fissure, Dp is the effective diffusion
coefficient of tracer in the immobile water, the x-axis of the coordinate system is parallel
to the flow direction (fissure axis), y is the distance perpendicular to the flow axis, 2b
and v are the fissure aperture and the mean water velocity in the fissure, respectively.

The solution to (5.87) and (5.88) for instantaneous tracer injection is given by
Maloszewski and Zuber (1985, 1990):

C(t) = aM
√

to

2πQ
√

PD

t∫
0

exp

[
− (to − ξ)2

4ξ toPD
− a2ξ2

t − ξ

]
dξ√

ξ(t − ξ)3
(5.90)

where ξ is the integration variable and a is a so-called diffusion parameter equal to:

a = nim

√
Dp

2b
(5.91)
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and t0 is the mean transit time of water through the fissures

t0 = Vm

Q
(5.92)

where Vm is the volume of mobile water in the whole system.
The solution (5.90) is termed by Maloszewski and Zuber (1985) the Single Fissure

Dispersion Model (SFDM). It has three parameters: (1) the mean transit time of water
(t0), (2) the dispersion parameter (PD) and (3) the diffusion parameter (a). Solution
(5.90) is applicable when the tracer experiment is performed over small distances
(5.87) in a fissured aquifer under natural flow conditions (e.g. detection in a spring or
observation well), and also when it is performed in a radial-convergent (monopole)
test (combined tracer and pumping experiment). The SFDM model can be applied for
the interpretation of tracer experiments performed in aquifers that consist either of
a fracture system or of a single fracture. Figure 5.14 shows the normalized (CQt0/M)
solution (5.90) calculated for constant values of the mean transit time of water (12 h)
and the dispersion parameter (0.01), for different values of the diffusion parameter (a).
The influence of tracer diffusion into the immobile water in the microporous matrix
is easily seen there. Increases in the matrix diffusion (larger values of a) result in the
concentration peak being delayed, in a stronger tailing effect and in a decrease of the
relative tracer mass recovery.

Generally, the model parameters (t0, PD, a) can be estimated relatively easily by
fitting (5.90) to the experimental data using a trial-and-error procedure. After the
values of those parameters have been found, it is possible to calculate values for other
system properties, but this is done in different ways depending on the experimental
conditions.

In combined tracer and pumping experiments (Figure 5.6), when the thickness of the
aquifer (H) and the hydraulic conductivity (k) are known independently, the following
properties can be given approximate values:

– mobile (effective, fissure) porosity (nf);

nf = Q t0

πx2H
(5.93)

– mean fissure aperture (2b) for the fracture system (Maloszewski, 1994);

2b = 4.29τf

√
k

nf
(5.94)

where (2b) in the above expression is expressed in [µm] and (k) in [m/d], and τf is the
tortuosity factor – equal to about 1.5 for a network of tortuous fissures (Maloszewski
and Zuber, 1985).
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Figure 5.14 Theoretical normalized tracer concentration (top) and relative recovery (bottom)
curves calculated for the mean transit time of water t0 = 12 h and dispersion parameter PD = 0.01,
for different values of the diffusion parameter (a). This set of curves demonstrates the influence of
matrix diffusion. Curves labelled ‘1’ correspond to the situation of no diffusion of tracer into the
immobile water (a = 0).

When the effective diffusion coefficient of tracer in the immobile water in the mi-
croporous matrix (Dp) is known or can be estimated (Neretnieks, 1980; Maloszewski,
1994), then, for a known fissure aperture (2b), the matrix porosity can be calculated
from the formula:

nim = (2b)a√
Dp

(5.95)
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5.1.6 Examples

5.1.6.1 Column experiment

In a column (L = 25 cm, 2r = 5 cm) filled with Quaternary gravels and a small pro-
portion of clay, the volumetric flow rate was Q = 6 cm3/min (for the experimental
setting see Figure 5.6). The tracer experiment was performed using Uranine (injected
mass M = 8.5 mg), which was instantaneously injected through the whole column
cross-section (Dirac impulse). The experimental tracer concentrations (in µg/mL)
measured in the outflow from the column over nearly 40 min are shown in Figure 5.15
(top). The form of the tracer injection in this experiment allows the transport to be
treated as one-dimensional, using equations (5.29) or (5.33). The model has two pa-
rameters (t0 and PD), the values of which have to be found from the tracer curve.
As mentioned in Section 5.1.3, the correct way to find these parameters is to use the

Figure 5.15 Tracer concentration observed in column experiment (top), and normalized C/M con-
centration curves observed (circles, bottom) and calculated (solid lines, bottom) using parameter
values (t0 and PD) estimated from (1) least-squares fitting procedure (LSQM), (2) method of mo-
ments (MM) and (3) cumulative curve method (CCM). For parameter values see Table 5.1.
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Table 5.1 Estimates of parameters (t0 and PD) and system properties (v, αL, n) found from
column experiment by different methods (LSQM, MM, CCM)

Parameters Symbol LSQM MM CCM

Mean transit time of water (5.18) t0 [min] 17.6 15.6 14.0
Dispersion parameter (5.19) PD [−] 0.205 0.123 0.157
Goodness-of-fit (5.93) E [%] 99.7 81.3 73.9

System properties

Mean water velocity (5.18.1) v [m/d] 20.5 23.1 25.7
Longitudinal dispersivity (5.19) αL [m] 0.051 0.031 0.039
Mean porosity (5.21.1) n [%] 21.5 19.1 17.1

proposed method of combined least squares (LSQM). Inspection of the tracer concen-
tration curve (Figure 5.15, top) clearly demonstrates that the approximate methods
(method of moments and cumulative curve method) cannot be used because the con-
ditions for their application, discussed in Section 5.1.3, are not fulfilled (tracer recovery
RR << 100%). Despite this, the values of the parameters were also calculated using
MM and CCM in this case, in order to appreciate better the disadvantages of these
methods. The calculated parameter values (t0 and PD) and the values calculated from
these for several system properties (mean water velocity, longitudinal dispersivity and
porosity) are summarized in Table 5.1. The goodness-of-fit values are also shown
there.

The theoretical concentration curves calculated using the parameter values summa-
rized in Table 5.1 are shown in Figure 5.15 (bottom). The concentration curves are
normalized to the mass of tracer injected – this is generally standard in the presentation
of tracer data.

(C/M) are expressed in units [1/volume], and, especially in multi-tracer experiments,
directly shows the tracer behaviour in the system. From the goodness-of-fit values and
from inspection of the curves shown in Figure 5.15 (bottom), it is clear that the
approximate methods (MM and CCM) yield completely unsatisfactory results in this
case. The worst results are yielded by the cumulative curve method (CCM).

5.1.6.2 Combined pumping-tracer test

A combined pumping and tracer test was performed for a flow distance of x = 100 m in
an aquifer of Quaternary gravels, with an average thickness of H = 8 m (for experimen-
tal setting, see Figure 5.6, bottom). The aquifer was under steady-state flow conditions,
with a constant pumping rate of Q = 50 m3/h. The mass of tracer (Uranine) instanta-
neously injected into the fully penetrating well was M = 340 g. The experimental tracer
concentration (in mg/m3), shown in Figure 5.16 (top), was measured in the pump-
ing well (used for drinking water production) over a period of 150 days. The flow is
steady-state radial-convergent flow, therefore the tracer transport can be considered as
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Figure 5.16 Tracer concentration observed in combined pumping-tracer experiment (top), and
normalized C/M concentration curves observed (circles, bottom) and calculated (solid lines, bottom)
using parameter values (t0 and PD) obtained from (1) least-squares fitting procedure (LSQM), (2)
method of moments (MM) and (3) cumulative curve method (CCM). For parameter values see
Table 5.2.

one-dimensional (5.19); the appropriate mathematical model is that given in Equation
(5.15). The model has two unknown parameters (t0 and PD), the values of which have
to be found. Because the mass recovery of tracer after 150 days was about RR = 99%, it
theoretically is possible to apply the approximate parameter estimation methods (see
Section 5.1.3). The parameter values found using the least-squares procedure (LSQM)
and the approximate methods (MM and CCM) are summarized in Table 5.2.

The sets of parameter values found with LSQM and MM are similar, as are
the goodness-of-fitting values (99.5 and 98.5%, for LSQM and MM, respectively).
The CCM yields again the worst results (E = 75.4%), but it should be noted that
the PD value found in the experiment (0.173) is much larger than 0.005, which should
exclude the application of CCM (see 5.65). The theoretical tracer concentration curves
calculated using the t0 and PD values found by LSQM, MM and CCM (Table 5.2) are
shown in Figure 5.16 (bottom).
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Table 5.2 Estimates of parameters (t0 and PD) and system properties (v, αL, n) found from
combined pumping-tracer experiment by different methods (LSQM, MM, CCM)

Parameters Symbol LSQM MM CCM

Mean transit time of water (5.18) t0 [days] 38.6 37.5 32.4
Dispersion parameter (5.19) PD [−] 0.193 0.174 0.173
Goodness-of-fit (5.93) E [%] 99.5 98.5 75.4

System properties

Mean water velocity (5.18.1) v [m/d] 2.59 2.67 3.09
Longitudinal dispersivity (5.19) αL [m] 19.3 17.4 17.3
Mean porosity (5.21.2) n [%] 18.4 17.9 15.5

5.1.6.3 Experiment in multi-flow system

A tracer experiment was performed in one of the cells in the artificial wetland Nowa
Slupia (Maloszewski et al., 2006b). The tracer concentration curve (in [g/l], see Figure
5.17, top) showed three peaks. This is due to the way the wetland was constructed:
it consists of parallel porous layers with different hydraulic properties, similar to
the system shown in Figure 5.11. The water flux through the wetland cell was rel-
atively stable (Q = 0.77 l/s), and the hydraulic conditions could be assumed to be
in a steady-state. Bromide (M = 16.7 kg) was injected through the whole cross-
section perpendicular to the flow direction, and was measured in the outflow from
the cell (which collected all of the water that flowed through that cell). The av-
erage flow distance was equal to x = 25.1 m. The experiment was analysed using
the Multi-Flow Dispersion Model (MFDM) presented in Section 5.1.4. The param-
eters obtained for three single flow-paths found in the system are summarized in
Table 5.3.

It must be stressed that estimation of transport parameters in multi-flow systems
cannot be done using the approximate methods (MM, CCM); these are applicable only
under the conditions mentioned earlier, in 1D and mono-flow systems. The parameter
values found by applying the MM and CCM methods in this present experiment are
shown here (Table 5.3) only to demonstrate how far those values are from reality. The
corresponding theoretical concentration curves are additionally shown in Figure 5.17
(bottom). It is clear that the curves 2 and 3 (calculated with MM and CCM, respectively)
do not follow the multi-peak concentration curve observed. The goodness-of-fit (E)
of these two concentration curves is 47 and 50% (for MM and CCM, respectively).
This contrasts with the value of E = 99.5% for MFDM. It should be noted that, when
the relative recovery is close to RR = 100%, the tracer mean transit time calculated
by the method of moments (MM) in a multi-flow system can be used to estimate
the total volume of water in the system (Vm = Q × t). The small difference between
the volumes of water calculated here with MFDM and MM results from the fact that the
tracer recovery was lower then 100% (RR = 94.5%).
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Figure 5.17 Tracer concentration observed in multi-layered porous medium experiment (top),
and normalized C/M concentration curves observed (circles, bottom) and calculated (solid lines,
bottom) using parameter values obtained from (1) multi-flow dispersion model (MFDM; dashed lines
represent partial curves for the three flow-paths), (2) method of moments (MM) and (3) cumulative
curve method (CCM). For parameter values see Table 5.3.

Table 5.3 Estimates of parameters and system properties found from multi-layered porous
medium experiment (Maloszewski et al., 2006b) by different methods (MFDM, MM, CCM)

Parameters Symbol MFDM MM CCM

Partial transit times (5.52) t0i [h] 66 179 346 133.4 104.8
Partial dispersion parameter (5.51) PDi [−] 0.18 0.06 0.01 0.26 0.24
Portion of flow (5.56) p i 0.53 0.29 0.18 1.0 1.0
Goodness-of-fit (5.93) E [%] 99.5 47 50

System properties

Mean transit time (5.58) t0 [h] 149.2 133.4 104.8
Volume of water (5.57) Vm [m3] 400 370 290
Mean porosity (Vm/VCE L L ) n [%] 17.8 16.5 12.9
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5.1.6.4 Experiment in double-porosity
(fissured) medium

The tracer experiment described by Einsiedl and Maloszewski (2005) is used here as
an example of parameter estimation in a double-porosity medium. The experiment
was performed in the Lindau Rock Laboratory (Germany) in a highly permeable ore
dike, with the flow distance between the B8 (injection) and BL10 (pumping) wells
being x = 11.2 m. The pumping rate was Q = 0.23 l/s. The thickness of the ore dike was
approximately equal to H = 2 m, and the hydraulic conductivity approximately equal to
k=2.07 m/d. The test site is described in detail by Himmelsbach, Hötzl and Maloszewski
(1998). A new fluorescent dye (pyrene-1, 3, 6, 8-tetra sulfonic acid, PTS) was used. The
experiment was performed under radial-convergent flow conditions (Figure 5.6), and
the SFDM model (5.63) was used for data interpretation. The best-fit curves are shown
in Figure 5.18 (top). The estimated parameter values, found by simultaneous fitting
of the tracer concentration and recovery curves, as recommended by Maloszewski and
Zuber (1990), were t0 = 2.4 h, PD = 0.05 and a = 8.5 × 10−3 s−1/2; a is the diffusion
parameter. The goodness-of-fit (E) was 98%. When combined with the known hydraulic
properties of the system and the diffusion properties of the tracer, these estimates yield
a fissure (mobile) porosity of 0.24%, a matrix (immobile) porosity of 5.0% and a mean
fissure aperture of 188 µm. The parameter values found using the SDFM model are
summarized in Table 5.4, together with values found using the approximate methods
(MM and CCM). Once again, these approximate methods cannot be applied to estimate
transport parameters in double-porosity media, as is evident from the values of t0 and
PD shown in Table 5.4. When these values are used to calculate the tracer concentration
curves, the curves obtained are as shown in Figure 5.18 (bottom, curves 2 and 3).
The goodness-of-fit (E) values for these curves are 13.9 and 1.5%, for MM and CCM
respectively.

Table 5.4 Estimates of parameters and system properties found from fissured-
aquifer experiment, using both the SFDM model and, wrongly, the approximate
methods (MM, CCM)

Parameters Symbol SFDM MM CCM

Mean transit time of water (5.65) t0 [h] 2.4 7.3 5.6
Dispersion parameter (5.19) PD [−] 0.05 0.26 0.33
Diffusion parameter (5.64) a [s−1/2] 8.5 × 10−3 — —
Goodness-of-fit (5.93) E [%] 97.5 13.9 1.5

System properties

Dispersivity αL [m] 0.56 2.94 3.70
Mean fissure porosity (5.66.1) nm [%] 0.24 — —
Mean fissure aperture (5.66.2) 2b [µm] 188 — —
Mean matrix porosity (5.66.3) nim [%] 5.00 — —
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Figure 5.18 Normalized tracer concentration C/M (circles, top) and relative recovery (squares,
top) observed in combined pumping and tracer test performed in fissured rock aquifer (Einsiedl
and Maloszewski, 2005). Concentration and recovery curves (top) are those obtained by parameter
estimation using SFDM (5.63). Bottom: observed concentration (C/M) compared with theoretical
concentration curves (solid lines) calculated using parameter values obtained from (1) SFDM,
(2) method of moments (MM) and (3) cumulative curve method (CCM). For parameter values see
Table 5.4.

5.2 Tracer experiments under unsaturated flow conditions

Mathematical modelling of tracer (pollutant) transport in the unsaturated zone requires
as a first step the determination of water flow through the soil, which is a function of
time and space. The water flow is described by the Richards equation (Richards, 1931;
Feddes et al., 1988; Zaradny, 1993), which is a combination of the Darcy-Buckingham
equation and the equation of continuity:

∂θ

∂t
= −∂q

∂z
= ∂

∂z

[
K (h)

∂h

∂z
− K (h)

]
(5.96)
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where z is the vertical coordinate, q is the water flux, t is the time, K (h) is the soil hy-
draulic conductivity function, which depends on the pressure head h and the volumetric
water content θ.

The solving of the above equation requires knowledge of the main hydraulic char-
acteristics of the unsaturated soil, such as the relationship between the pressure head h
and the hydraulic conductivity K , both of which depend on the soil water content θ.
The relationship between h(θ) and K (θ) can be described using known laboratory and
field methods, and also by many mathematical equations. For practical purposes, the
hydraulic functions are defined by a number of closed-form analytical expressions,
for example those due to Brooks and Corey (1964), Rijtema (1969), Mualem (1976)
and Van Genuchten (1980). Forms for the water retention characteristic θ(h) and the
conductivity function K (h), for the unimodal case without a hysteresis effect, are given
by Van Genuchten (1980), based on the Mualem approach (Mualem, 1979):

θ(h) = θr + θs − θr

[1 + (α · h)n]m
for h < 0

θ(h) = θS for h ≥ 0
(5.97)

K r(h) = [1 − (α · h)n−1 · [1 + (α · h)n]m]2

[1 + (α · h)n]
m
2

(5.98)

where θs and θr are the saturated and residual water content, respectively. α, n and m are
empirical parameters describing the shape of the retention curves, where m = 1 − 1/n.
K r(h) is the relative hydraulic conductivity function; this is the hydraulic conductivity
function K (h) divided by the saturated hydraulic conductivity K s .

Traditionally, these highly nonlinear functions have been obtained in small-scale lab-
oratory experiments using direct steady-state methods (e.g. Haws, Das and Rao, 2004;
Kern, 1995; Vereecken, Maes and Feyen, 1990). Recently, however, experimental lysime-
ter methods have become more attractive (e.g. Kool and Parker, 1988; Kool, Parker and
van Genuchten, 1985, 1987; Maciejewski et al., 2006; Nützmann et al., 1998); these
methods are applied under transient-flow conditions, and are coupled with inverse
modelling techniques. These methods require a special kind of experiment. During the
experiments some auxiliary variables are measured, for example cumulative outflow,
pressure head, water content or infiltration rate. Then the a priori unknown soil hy-
draulic parameters are determined by minimizing an objective function containing the
deviations between observed and predicted quantities. An example of the character-
istic found for sandy lysimeters by Maciejewski et al. (2006) is shown in Figure 5.19.
Equations (5.96), with known soil characteristics, and (5.97), can be solved by finite-
difference techniques using, for example, the computer programs SWATRE (Feddes
et al., 1978; Belmans, Wesseling and Feddes, 1983; Maciejewski, Zaradny and Klotz,
1992) or HYDRUS-1D (Simunek et al., 2008).

Many investigators (e.g. Coats and Smith, 1964; Van Genuchten and Wierenga,
1977; Gaudet et al., 1977; De Smedt and Wierenga, 1979) have shown that under
unsaturated flow conditions only a part of the water in a REV (representative elementary
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Figure 5.19 An example of soil characteristics: (left) K(θ); (right) water suction h as a function
of water content after free drainage for typical Bavarian sands (after Maciejewski et al., 2006) –
circles show observed values, and solid line shows values obtained using van Genuchten Model.

volume; see Bear, 1972) takes part in motion; this is the so-called mobile water. As
this the case, the unsaturated zone can be considered as a double-porosity medium
with mobile and immobile water components. The transport of an ideal tracer in the
mobile phase can be described by the dispersion-convection equation with a source/sink
term that describes the tracer transfer between mobile and immobile water using
in most cases the approximation introduced by Coats and Smith (1964). The tracer
transfer is proportional to the difference between the tracer concentrations in the
mobile and immobile water. The existence of immobile water in unsaturated soil is
usually very difficult to document experimentally. But, given that there theoretically are
two water phases, the mass balance equation for the double-porosity model is as follows
(De Smedt, Wauters and Sevilla, 1986):

∂(θmC)

∂t
+ ∂(θimCim)

∂t
= ∂

∂z

(
Dθm

∂C

∂z

)
− ∂

∂z
(qC) (5.99)



P1: OTA/XYZ P2: ABC
c05 JWBK370/Liebundgut June 18, 2009 14:37 Printer Name: Yet to Come

5.2 TRACER EXPERIMENTS UNDER UNSATURATED FLOW CONDITIONS 157

and

∂

∂t
(θimCim) = ω · θm · (C − Cim) (5.100)

where C and Cim are the tracer concentrations in the mobile and immobile water,
respectively; θm and θim are the mobile and immobile water contents, respectively; ω is
the transfer coefficient of the tracer exchange between the mobile and immobile water
components; z and t are space and time variables, respectively.

In practice, it can be assumed that the ratio of immobile to total water content f =
θim/θ is constant, which reduces Equations (5.99–5.100) to:

(1 − f )
∂(θC)

∂t
+ f

∂(θCim)

∂t
= (1 − f )

∂

∂z

(
Dθ

∂C

∂z

)
− ∂(qC)

∂z
(5.101)

f
∂(θCim)

∂t
= ω(1 − f ) θ (C − Cim) (5.102)

where D is the dispersion coefficient given by:

D = αL
q

(1 − f )θ
+ Dd (5.103)

αL is the longitudinal dispersivity, Dd is the diffusion coefficient of tracer in the soil,
given by Dd = Dm/τ, where Dm is the molecular diffusion coefficient of tracer in free
water and τ is the tortuosity.

Because θ and q depend on depth z and time t, Equations (5.99–5.100) or
(5.101–5.102) are non-linear. They can only be solved numerically, for example us-
ing the method of moving coordinates (Maciejewski, 1993). This approach allows the
convection term to be eliminated from the transport equation, which in the numerical
solution strongly reduces the effect of numerical dispersion. The following variables
are taken as known: the water flux q(z, t), and the total water content θ (z, t), calculated
with (5.96) and (5.97–5.98). The model of the tracer transport through the unsatu-
rated zone (5.101–5.102) has three parameters: the longitudinal dispersivity (αL ), the
tracer transfer coefficient between the mobile and immobile water (ω), and the ratio of
immobile water to the total water content (f = θim/θ).

When all water takes is mobile, Equations (5.99–5.100) reduces to:

∂(θC)

∂t
= ∂

∂z

(
θD

∂C

∂z

)
− ∂(qC)

∂z
(5.104)

When this equation is applied to a tracer concentration curve measured in the unsat-
urated zone there is only one parameter to be estimated, the longitudinal dispersivity
(αL ).

The modelling of tracer transport using the equations given above can be performed
using software such as HYDRUS-1D (Simunek et al., 2008), which includes different
double-porosity models.
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5.3 Tracer experiments in streams and rivers

The selection of a model to describe tracer transport in streams or rivers depends on the
situation in which the tracer experiment is performed (Figure 5.20). Generally, one has
to consider if there exist significant zones with immobile water between the injection
and detection sites (e.g. Bencala and Walters, 1983; Choi, Harvey and Conklin, 2000;
Kazezyılmaz-Alhan, 2008). When there are no such zones (or when those zones are
of negligible importance), the tracer transport can be described by the 1D Equation
(5.19) (see Section 5.1.1). This is especially true when the injection of the tracer is
performed throughout the whole cross-section of the river; this is done by using
several pipes situated at different points across the flow. The solution to (5.19), for
the instantaneous injection (5.29 or 5.33), is given in Section 5.1.2. In most practical
applications, hydrologists focus their attention on the estimation of the flow rate (Q ) of
the river. When the tracer concentration curve, C(t), is fully measured at the observation
site (see Figure 5.20, top), then the river flow rate, Q , can be easily calculated using
Equation (5.40). After rearrangement, this reads as follows:

Q = M
∞∫
0

C(t)dt

= M

F
(5.105)

Figure 5.20 Schematic presentation of tracer experiments in rivers or streams where (top) there
are no zones of immobile water and (bottom) zones of immobile water exist and the tracer transport
is modelled using the concept of a double-porosity medium. The tracer concentration curves
measured at the observation place in the former case (top) show no tailing effect; in the latter case
(bottom), there is a strong tailing effect resulting from tracer diffusion into the immobile water.
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where M is the mass of tracer injected (at x = 0) and F is the area under the tracer con-
centration curve, which can be calculated using the trapezoidal method of integration:

F = 1

2

N∑
i=1

(Ci−1 + Ci) · (ti − ti−1) (5.106)

where N is the number of points measured. For Ci and ti , see Figure 5.9 (top).
Some flow fluorometers perform the above calculation automatically during tracer

detection in a river. Then one only has to give the mass of tracer injected (M) in order
to obtain the flow rate (Q ). To obtain the water flow velocity (v), the mean water transit
time (to) or the longitudinal dispersivity (αL ), it is necessary to model the observed
tracer concentration curve using (5.29) or (5.33). To find those parameters, one can use
the LSQ method described in Section 5.1.3. Knowing the flow rate (Q ) and the mean
water transit time (to), the volume of water between the injection and detection sites
can be estimated. This is also the volume of the mobile water, V = Vm = Q · to . For a
known flow length (L ), the mean cross-sectional area of the river (S) is given by the
ratio Vm/L .

When zones of stagnant water exist between the injection and detection sites
(Figure 5.20, bottom), the exchange process (diffusion) of tracer between the mobile
and immobile phases has to be included in the 1D transport equation. In most practical
cases, the model of Coats and Smith (1964) is used, as mentioned in Section 5.2. The
solution to (5.101–5.102) for a constant flow rate in the river (q = Q ) and for instanta-
neous injection of tracer at x = 0 is (e.g. Herrmann, Maloszewski and Stichler, 1987):

C(t) = M

Q
√

4πPD t3/to

{
exp

[
− (1 − t/to)2

4PD t/to
− ωt

]
+ ωt

√
β exp(−ωβt)

×
1∫

0

I1

(
2ωt

√
β(1 − ξ)ξ

)
× exp

[
− (1 − ξt/to)2

4PDξt/to
− ω(1 − β)tξ

]
dξ

ξ
√

1 − ξ

}

(5.107)

where:

β = Vm/Vim (5.108)

and I1(η) is the modified Bessel function of the first kind and first order of argument
η, and ξ is the integration variable [0, 1].

This model (5.107) has four parameters (to, PD , ω, β), which are difficult to estimate
because of their possible nonindependence. An alternative approach is to use the SFDM
model (5.90), which was developed to describe convective-dispersive transport within
mobile water with simultaneous diffusion into the zone with immobile water (see
Section 5.1.5). This model has three parameters: to , PD and the diffusion parameter a
(5.91). Note that in this case, the fissure aperture (2b) is replaced by the mean river
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width (W), and the diffusion parameter (a) reads as follows:

a =
√

Dm

W(1 + β)
(5.109)

where Dm is the molecular diffusion coefficient of tracer in free water.
If the discharge (Q ) of the river is known (or can be estimated), then the volume of

mobile water (Vm) can be easily calculated from the mean transit time parameter (t0) of
the SFDM model: V = Vm = Q · to . Furthermore, if the mean width of the river (W)
and the diffusion coefficient of tracer in free water (Dm) are known, the parameter β

can be calculated from (5.109):

β =
√

Dm

aW
− 1 (5.110)

Finally, by using (5.108), the volume of immobile water is given by:

Vim = Q to/β (5.111)

5.4 Environmental tracer data

5.4.1 Introduction

The environmental isotopes, for example tritium and the stable isotopes 18O or 2H,
are suitable for tracing the behaviour of water at different stages of the hydrological
cycle because, among their other characteristics, they are constituents of the water
molecule. When used as a supplement to conventional hydrological methods, these
tracers may provide additional insight into problems such as the origin of water, the
storage properties of catchments, water dynamics in groundwater systems and the
interaction between surface and groundwater. The quantitative evaluation of the tracer
data in these cases is most often based on the application of lumped-parameter models.
The main advantage of these models is the fact that they require only the knowledge
of the tracer concentration in the recharge area (input function) together with some
records of tracer data at the observation site (output). In spite of their simplicity,
lumped-parameter models yield useful information on zonal or regional values of
some hydrologic parameters. Their applicability has been confirmed in a number of case
studies, for example DeWalle et al. (1997), Kendall and McDonell (1998), Maloszewski
and Zuber (1993, 1996), Maloszewski et al. (1983, 2002), McDonell, Rowe and Stewart
(1999), McGuire, DeWalle and Gburek (2002), Stichler, Maloszewski and Moser (1986),
Turner, Macpherson and Stokes (1987), Vitvar and Balderer (1997).
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Figure 5.21 Conceptual models of the lumped-parameter approach in groundwater systems.

5.4.2 The basic concept of lumped-parameter models

The basic principles of lumped-parameter models (also called black-box models),
together with details of their applicability, have been well described (e.g. Maloszewski
and Zuber, 1982, 1996; Zuber and Maloszewski, 2001). Generally, it is presumed that
the groundwater system can be considered as a closed system that (1) is sufficiently
homogeneous, (2) is in a steady state, (3) has a defined input (recharge or infiltration
area) and (4) has a defined output in the form of pumping wells, springs or streams
draining the system. The groundwater system can be considered as a single-porosity or
double-porosity medium (Figure 5.21). For the single-porosity medium, it is assumed
that all the water in the system is mobile, or that the volume of immobile water can be
neglected.

Every lumped-parameter model is characterized by its own transit time distribution
function. That function has either to be known, or to be assumed on the basis of
hydrological information about the system being considered. In most cases, transit
time distribution functions have one or two parameters, the values of which can be
estimated by calibrating the model to the experimental data observed in the outflow
from the system. The input concentration of the environmental tracer is either measured
directly, or is calculated from known hydrological and isotope data (e.g. Maloszewski
and Zuber, 1982, 1996; Grabczak et al., 1984; McGuire, DeWalle and Gburek, 2002;
Stichler et al., 1986). The main parameter of all models for single-porosity media is the
mean transit time of water (T) through the system, which is related to the mobile water
volume (Vm) in the system and the volumetric flow rate (Q ):

Vm = Q T (5.112)

This mean transit time represents the average of flow times along all of the individual
streamlines in the aquifer, each weighted by the amount of flowing water. To determine
the mean transit time of water (T), the temporal variation of the measured tracer input
concentration, Cin(t), is used to calculate the tracer output concentration, Cout(t),
which is then compared with the concentrations measured in the output from the
system. The relationship between the input and output concentrations is given by the
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convolution integral:

Cout(t) =
∞∫

0

Cin(t − τ) g(τ) exp(−λτ) dτ (5.113)

where λ is the decay constant of the radioactive tracers and g(τ) is the transit time
distribution function.

It should be remembered that the integral over the g(τ) for all possible transit times
(τ), that is from zero to infinity, has to be equal to unity. For most of the models
used for interpreting isotope data in single-porosity media, the mean value (τ) of the
transit time distribution function g(τ) has to be equal to the mean transit time of water
(T). The most common kinds of transit time distribution functions, g(τ), used for
single-porosity media are:

Piston Flow Model (PFM)

g(τ) = δ(τ − T) (5.114)

Exponential Model (EM)

g(τ) = 1

T
exp

(
− τ

T

)
(5.115)

Combined Exponential Piston Flow Model (EPM)

g(τ) = η

T
exp(− ητ

T
+ η − 1) for τ > (η− 1)T/η (5.116)

g(τ) = 0 for τ = (η− 1)T/η

Dispersion-Model (DM)

g(τ) = 1

τ
√

4πPDτ/T
exp

[
− (1 − τ/T)2

4PDτ/T

]
(5.117)

where PD is the dispersion parameter and η is the ratio of the total water volume in the
system to volume of that part of the water characterized by the exponential transit time
distribution (V/VEM).

The EPM model is a combination of the PFM and EM models in series; the order
in which these models are applied is not important. A schematic representation of
lumped-parameter models and their parameters is given in (5.114) and Figure 5.22,
and examples of the transit time distribution functions (5.114)–(5.117) are shown in
Figure 5.23. The use of the EPM yields the parameters (T) and (η), which are then used
to determine the transit times (TPFM) and (TE M):

TE M = T

η
(5.118)

TPFM = 1 − η

η
T (5.119)
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Figure 5.22 Schematic presentation of lumped-parameter models and their parameters.

Figure 5.23 Examples of the transit time distribution function of tracer particles through a
groundwater system calculated for different lumped-parameter models: PFM is the piston flow
model, EM is the exponential model, EPM is the combined exponential-piston flow model and DM
is the dispersion model.

and the volumes of water (VPFM) and (VE M):

VE M = Q TE M (5.120)

VPFM = Q TPFM (5.121)

in the parts of the system characterized by the piston-flow and the exponential transit
time distributions, respectively. The sum of the water volumes in the parts with expo-
nential and piston transit time distributions yields the volume of water in the whole
system:

V = VEM + VPFM = Q T (5.122)

Different lumped-parameter models are required for double-porosity media
characterized by systems of fractures (Figure 5.13, top) where there is both mobile
water in the fractures and immobile water in the microporous matrix (e.g. Figure 5.13
top and 5.21 right). The transport of tracers within the mobile water (by convection
and dispersion), with simultaneous diffusion into the immobile water, was described by
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Maloszewski (1994) for a system of parallel fissures having the same aperture and spac-
ing (Figure 5.13); this is referred to by Maloszewski and Zuber (1985) and Maloszewski
(1994) as the Parallel Fissure Dispersion Model (PFDM). That model could also be used
for the interpretation of environmental tracer data, but its transit time distribution
function has four parameters that need to be estimated, which makes it inapplicable
in practice in isotope hydrology. This difficulty can be avoided by noting, as did
Maloszewski (1994), that after a sufficiently long time in a double-porosity system the
transit time distribution function obtained from the PFDM model has the same shape
as that obtained from the ordinary dispersion model (5.117). What happens physically
is that after a sufficiently long time the tracer diffuses fully into the porous matrix
holding the immobile water. Once that state is reached, the tracer observed in the
output from the double-porosity system behaves as it would in a single-porosity system
with a larger volume of water (porosity). It has been found possible in practice to use
the ordinary dispersion model (5.117) to interpret tritium (3H) or stable isotope (18O
and 2H) data in double-porosity systems when the transit time of water (T) through
the system is greater than 2–3 years (Maloszewski, 1994; Maloszewski, Stichler and
Zuber, 2004); this applies to most applications of environmental tracers in fractured
rocks. In applying the ordinary dispersion model (5.117) to a double-porosity medium,
it must be noted that instead of the mean transit time of water (T) the apparent
parameter T∗, referred to as the mean transit time of the tracer is yielded T∗ is
given by:

T ∗ =
(

nm + nim

nm

)
× T = RT (5.123)

where nm is the mobile porosity defined as 2b/L (Figure 5.13) and R is the retardation
factor resulting from the diffusion of tracer into the immobile water:

R =
(

nm + nim

nm

)
= ntotal

nm
(5.124)

where ntotal is the total water content in the fissured rock (nim + nm).
In practice, the apparent parameter T

∗
can be used to calculate the total volume

of water in the system (V), that is the sum of the mobile (Vm) and immobile (Vim)
components:

Q T∗ =
(

nm + nim

nm

)
× TQ = RTQ = Vm + Vim = V (5.125)

Accordingly, the total volume of water (V) in the groundwater system in a heterogeneous
fissured aquifer is R times greater than the volume of mobile water (Vm), the volume that
mostly is of interest. This fact has to be taken into account in interpreting environmental
tracer data in fissured rocks, otherwise the volume of available water resources will be
R-times overestimated.
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Figure 5.24 Schematic presentation of double-porosity system comprising an aquifer (with mobile
water) and an aquitard with immobile water: m is the thickness of the aquifer, x is the distance
from the recharge zone measured along the flow path.

The retardation factor R can be calculated when both the porosities nm and nim,
are known. These two porosities can be found only when a combined pumping test
and tracer experiment is performed in the area under investigation (Maloszewski and
Zuber, 1990, 1991).

There are also tracer losses due to diffusion into regions with immobile water when
aquifers are surrounded by large aquitards with immobile water (Figure 5.24). In
this situation the tracer transport can be described by the SFDM (5.90) developed
for artificial tracer experiments (Section 5.1.5). However, when the flow distance (x)
is large and the thickness of the aquifer (H or m) is low, then for simplicity one can
assume only convective flow in the aquifer. The analytical solution given by Maloszewski
(1994), adapted to the lumped-parameter approach, yields the transit time distribution
function given by (5.126) and referred to as the Combined Piston Flow Diffusion Model
(SPFM) (see Nolte et al., 1991).

5.4.2.1 Combined piston-flow diffusion model (SPFM)

g(τ) = nim

√
Dp

nmm
√

πT(τ/T − 1)3
exp

(
− n2

imDp T

n2
mm2(τ/T − 1)

)
for τ > T (5.126)

g(τ) = 0 for τ = T

This model can be used for the interpretation of environmental tracer data obtained
from wells that are situated long distances away from the recharge area in comparison to
the thickness of the aquifer (x � m). The transit time distribution functions calculated
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Figure 5.25 Examples of the transit time distribution function of tracer particles calculated for
different lumped-parameter models: PFM is piston-flow model; SPFM is combined piston-flow and
diffusion model.

using (5.126) are shown in Figure 5.25. It can be seen there that for transit times of water
greater than 1000a, the diffusion of the environmental tracer into the aquitard already
plays a very important role. In such situations, the interpretation of environmental
tracer data using the traditional PFM-model (radioactive water age) expressed by
(5.114) will result in greatly underestimated values for the water transit time.

5.4.3 Selection of the model

Which model is selected for use in the groundwater system being considered depends
on the hydrological conditions there. Generally, the dispersion and piston flow models
are applicable for confined or partially confined aquifers; the exponential model can
only be used for unconfined aquifers when the unsaturated zone is negligibly small.
The hydrological situations in which different models can be applied are shown in Fi-
gure 5.26. The first example illustrated there (Figure 5.26, top) shows a confined aquifer
with a narrow recharge zone and a sampling site far away from the recharge (similar
to that shown in Figure 5.24). If the confined part of the aquifer has impermeable
boundaries and there is negligible immobile water, then the Dispersion Model (5.117)
can be applied. If the flow distance is very long (allowing the assumption that PD ≈
0), then the PFM (5.114) can be applied; this is possible because if PD has a very small
value close to zero, then the dispersive transit time distribution becomes equivalent to
the piston-flow distribution. However, that consideration and the application of the
PFM model is no more generally valid. It is very well known that the confined part
includes always stagnant water. Considering, for example measurements of 14C (Dp =
2.1·10−2 m2/a) in typical aquifer with a thickness of m = 30 m and an effective (mobile)
porosity nm = 25% located within an aquitard having a low porosity (stagnant) of
about nim = 5%, the SPFM (5.126) has to be used for transit time of water (T ≥ 1000
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Figure 5.26 Presentation of hydrological situations in which particular models are applicable.
Cases a, b, c and d correspond to sampling in out-flowing or abstracted water (in that form of
sampling the water samples are automatically averaged by volumetric flow rates). Case e corre-
sponds to samples taken separately at different depths (e.g. during drilling) (after Maloszewski and
Zuber, 1982).

years). For tritium or stable isotopes 18O and D the influence of diffusion into aquitard
is observed even for smaller transit times.

The second example illustrated in Figure 5.26 (centre) is an unconfined aquifer. If
the unsaturated zone in that aquifer is negligibly small, then for sampling points a,
b and d the Exponential Model (5.115) is applicable. If the unsaturated zone has to
be taken into account, the combined Exponential-Piston Flow Model (5.116) can be
used. In this situation, the piston-flow transit time distribution corresponds to tracer
transport through the unsaturated zone, the exponential transit time distribution to
tracer transport through the saturated zone. Modelling the tracer data with the EPM
yields values of T and η. The application of Equations (5.118–5.119) yields Tunsat = TPFM

and Tsat = TEM . This enables the volume of water in the unsaturated Vunsat (VPFM ) and
the saturated Vsat (VEM ) zones to be estimated using (5.120–5.121). If the water is
sampled in a well that is screened in its lower part, the Dispersion Model (5.117) has
to be used.

The third example illustrated in Figure 5.26 (bottom) shows a partially confined
aquifer. In this case, the streamlines with transit times τ = 0 do not exist, and only the
Dispersion Model (5.117) can be applied.

As has been mentioned, each lumped-parameter model has one or two unknown
parameters that can be found by solving Equation (5.113) with one of the transit time
distribution functions (5.114–5.117) or (5.126). To find these model parameters, the
user-friendly software FLOWPC can be used. This has been described in detail by
Maloszewski (IAEA, 2002). This software is available free of charge from the Isotope
Hydrology Section of the International Atomic Energy Agency (IAEA) in Vienna, or
directly from the author (Maloszewski).
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5.4.4 Examples

5.4.4.1 Application of stable isotopes to bank filtration

The example is taken from Stichler, Maloszewski and Moser (1986) and shows the
typical application of stable isotope (18O) measurements in a bank filtration problem.
This project was performed (1) to determine the proportion of Danube River water
in two pumping wells and (2) to estimate the mean flow times between the river and
the wells. Both wells are situated at a distance of about 150 m from the river bank.
They produce drinking water for the city of Passau (Southeast Germany), with nearly
constant pumping rates of about 105 l/s in total.

It is possible to use stable isotope data to determine the proportion of river water
in a production well when (1) the mean δ18O content in the river water is distinctly
different from that in the local groundwater and (2) when the data are collected over a
sufficiently long time. To determine the flow time between the river and the well also
requires that there be strong δ18O variations in the river water (i.e. in the input func-
tion). The measurements in the Passau project, shown in Figure 5.27, were performed

Figure 5.27 Stable isotope (δ18O) contents measured in the Danube River, in the local ground-
water (top), and in the pumping well PSI (squares in lower figure) that produces drinking water for
the city of Passau (after Stichler, Maloszewski and Moser, 1986).
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twice-monthly over a period of three years. The measurements show that the mean
δ18O contents in both water components – the local groundwater and the Danube river
water – are strongly different (−10.4 and −12.9�, respectively). Additionally, the δ18O
variations in the river water have an amplitude of more than 2.5�, whereas the local
groundwater has practically no variation in δ18O (Figure 5.27, top). In this situation, it
is possible to use a very simple conceptual model of the water flow in the area under
investigation (Figure 5.28).

The mean proportion (p ) of the Danube river water in the production well can be
calculated using the following equation (Stichler, Maloszewski and Moser, 1986):

p = CPW − CLG

CDR − CLG

(5.127)

where CPW , CDR and CLG are mean δ18O contents in the pumping well, the Danube
River, and local groundwater, respectively.

The time-dependent concentration in the pumping well, that is the output concen-
tration (Figure 5.28), C(t), is given as follows:

C(t) = p

t∫
0

CDR(τ) g(t − τ) dτ + (1 − p )CLG (5.128)

where the dispersive transit time distribution function g(t − τ) is taken according to
the hydrological situation (Figure 5.26) as:

g(t − τ) = 1

(t − τ)
√

4πPD (t − τ)/T
exp

[
−

(
1 − t−τ

T

)2

4PD
t−τ
T

]
(5.129)

where T and PD are, respectively, the mean flow time and the dispersion parameter for
the flow path between the Danube River and the production well.

The proportion of Danube river water (p) found for both production wells (PSI and
PSII) was equal to 0.8. The best fit of Equation (5.128) to the δ18O contents observed

Figure 5.28 Conceptual model of water flow through the river bank to the drinking water supply
of the city of Passau.
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in the pumping well PSI was given when the mean transit time was 60 days and PD was
equal to 0.12 (see Stichler, Maloszewski and Moser, 1986). The modelled δ18O curve is
shown for the well PSI in Figure 5.27 (heavy line in lower part of figure).

The method presented for using isotope data in bank filtration can be applied in
that form whenever the requirements for the isotope signals (mentioned above) are
fulfilled. The tracer input function can be measured directly in the water infiltrating
into the ground, that is in the river water, and therefore does not need to be calculated.
The use of another input function obtained directly (in this case, measured in precipi-
tation) is shown by Maloszewski et al. (2006a); this was used for modelling deuterium
(δ2H) transport through the unsaturated zone of unvegetated sandy soils, in lysimeter
experiments.

5.4.4.2 Application of tritium measurements in catchment areas

Tritium (3H) concentrations in atmospheric waters were constant and very low
(5–10 TU) before the first hydrogen-bomb tests in the atmosphere, in 1954. After that,
they increased until the years 1962–1963, when the highest concentrations (up to about
6000 TU) during the summer months in the northern hemisphere were reached. Since
then, the atmospheric concentrations of tritium have decreased exponentially, reaching
15–20 TU in the late 1990s. The high tritium concentrations in precipitation during the
early 1960s offer a unique opportunity for dating young groundwater systems having a
relatively wide range of ages (up to approximately 250 years).

Seasonal variations in the tritium concentration in precipitation, coupled with vari-
ations in precipitation and infiltration rates, cause difficulties in the estimation of
the input function, Cin(t). For each calendar year the value of the input (Cin) can be
expressed as:

Cin =

12∑
i=1

(Ci Ii)

12∑
i=1

I i

=

12∑
i=1

(αiCiPi)

12∑
i=1

(αiPi)

(5.130)

where Ci, Pi and Ii are the tritium concentration in precipitation, the precipitation rate
and the infiltration rate for the ith month, respectively.

The infiltration coefficient (αI = Ii/Pi) for each of the 12 months represents the
fraction of precipitation which enters the groundwater system in the ith month; it
is generally assumed to be the same each year. The record of Cin values, calculated
for each year prior to the latest sampling date, represents the input function. For the
interpretation of old tritium data, the record of Cin should include the constant Cin

values prior to the beginning of the rise in 1954. In other cases, the calculation of
the input function can be started in 1954. In most applications, it is assumed that the
infiltration coefficient (αi) in the summer months (αs) of each year bears a constant
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relationship to the infiltration coefficient in the winter months (αw); this relationship
is given by the infiltration constant (α = αs/αw). Introducing α into Equation (5.130)
results in (Grabczak et al., 1984):

Cin =
α

9∑
i=4

(CiPi)s +
3∑

i=10
(CiPi)w

α
9∑

i=4
(Pi)s +

3∑
i=10

(Pi)w

(5.131)

In the northern hemisphere, the summer months are from April to September
(the fourth to the ninth month) and the winter months are from October to March
(the tenth to the third month of the next calendar year). The monthly precipitation
should be taken from the meteorological station and the tritium data should be taken
from the nearest station of the IAEA network. However, for moderate and humid
tropical climates, the α coefficient is usually within the range of 0.4–0.8, and experience
shows that within this range the accuracy of modelling depends only slightly on the
assumed α value, provided that the system is more than 10–20 years old.

In general, if the input function is not found independently, the α coefficient is either
chosen arbitrarily by the modeller or is taken to be another parameter to be estimated.
It is a common mistake to calculate the input function (5.131) assuming α = 0 on the
basis of conventional hydrological observations, which indicate the lack of net recharge
in some areas during summer months, because it does not mean the lack of the summer
tritium in recharging water.

Figure 5.29 (left) shows the tritium input function calculated for the Schneealpe
karst catchment. The Schneealpe karst massif (Maloszewski et al., 2002), of Triassic
limestone and dolomites and with altitudes of up to 1800 m a.s.l., is located 100 km
south-west of Vienna, in the northern Calcareous Alps. The aquifer there, under-
lain by impermeable strata, has a thickness of up to 900 m and is the main drinking
water resource for Vienna. The mean precipitation is 1058 mm per year; the mean

Figure 5.29 Tritium input function (left) calculated for the karst catchment of the Schneealpe
Massif (100 km SW of Vienna) and (right) the modelled tritium content (output function) for the
spring at Wasseralm (Q = 200 l/s), calculated using the DM (T = 26a, PD = 0.8, α = 0.4) (after
Maloszewski et al., 2002).
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evaporation is about 374 mm per year. The catchment area, about 23 km2 in size (=F),
is drained by two springs, the Wasseralmquelle and the Siebenquellen, situated on the
northeastern and southwestern sides of the massif, respectively. The springs have mean
discharge rates of about 200 and 310 l/s, respectively. The tritium concentrations dur-
ing the base-flow were measured for nearly 25 years (1970–1995). The modelling of
those data using the dispersion lumped-parameter model (5.113, together with 5.117)
yielded mean transit times T = 26 years and T = 14 years for Wasseralm and Sieben-
quellen springs, respectively. The best fit of the DM to the experimental data for the
Wasseralm spring is shown in Figure 5.29 (right). The transit times combined with the
corresponding discharge rates give the volume of water (5.112) in the whole porous-
fissured karst massif system as V = 255 × 106 m3. Taking into account the surface of
the catchment area, this volume corresponds to the water equivalent of about heq =
V/F = 11 m.

5.4.5 Multi-cell approach and concluding remarks

Some other modelling approaches are also used for the interpretation of isotope data,
for instance, the compartmental (multi-cell or mixing cell) model. That approach was
introduced by Campana (1975), Przewłocki and Yurtsever (1974), Simpson and Duck-
stein (1976) and has been further developed by combining it with a lumped-parameter
approach (Amin and Campana, 1996). The mixing-cell approach is well described in
Campana, Harrington and Tezcan (2001). The compartmental model represents the
groundwater system as a network of interconnected cells or compartments through
which water and one or more dissolved constituents (tracers) are transported. Within
a given cell, perfect (complete) mixing of the tracer is assumed to occur. Some models
however, relax this constraint. The rates of flow of water and tracer between cells can
be calculated by:

1) the use of a flow model that solves the partial differential equations of
groundwater flow,

2) calibration with observed tracer data,

3) a flow algorithm based on linear or nonlinear reservoir theory, or

4) some combination of these preceding possibilities.

Each cell in the model represents a region of the hydrogeological system. These
regions are distinguished from each other on the basis of their hydrogeological unifor-
mity, the availability of data, the degree of resolution desired and constraints imposed by
numerical solutions. Compartment (mixing-cell) models have been applied to ground-
water flow systems by a number of investigators. They have been used to estimate aquifer
properties and recharge boundary conditions (e.g. Adar and Neuman 1988; Adar et al.,
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1988; Adar and Sorek, 1989; Fontes et al., 1991), to determine groundwater ages and
residence times (Campana, 1987; Campana and Simpson, 1984; Campana and Mahin,
1985; Kirk and Campana, 1990; Love et al., 1994) and to analyse tracer data and de-
lineate groundwater dynamics (Yurtsever and Payne, 1985). Other investigators have
used them as transport models (Van Ommen, 1985; Rao and Hathaway, 1989). One
pioneering approach has used a compartmental model to constrain a finite-difference
regional groundwater flow model (Harrington et al., 1999).

When there is an unidimensional arrangement of the cells, the method can be
regarded as a less versatile version of the lumped-parameter approach. For a single cell,
the method is equivalent to the EM; for a very large number of cells, it approaches the
DM or even the PFM. When more complicated configurations are used (e.g. different cell
volumes, two- and three-dimensional cell arrangements), the number of parameters
to be fitted increases and unique solutions are not attainable. Therefore, multi-cell
models can be regarded as a distributed-parameter approach with lumping. When
interrelated tracer data distributed in time and space are available, multi-cell modelling
is definitely advantageous over the lumped-parameter approach. Unfortunately, there
are many cases in which a single 3H determination, or the mean value of several
samples taken over a short period of time, have been interpreted either with the aid
of the EM or with the aid of the multi-cell approach. These are examples of incorrect
interpretation.

As mentioned above, lumped-parameter models are particularly useful when insuf-
ficient data exist to justify the use of multi-cell models, multi-tracer multi-cell models
(Adar, 1996), or numerical solutions of the transport equation. They are also very useful
in preliminary investigations of little-known systems. In the case when only separate
sampling sites exists (e.g. a spring, or a withdrawal well), then the use of the lumped
parameter models is sufficiently justified. Some investigators express the opinion that
in the era of numerical models, the use of a lumped-parameter approach is out of
date. However, as mentioned by Zuber and Maloszewski (2001) it is like trying to kill
a fly with a cannon, which is neither effective nor economic. Experience shows that
a number of representative hydrologic parameters can be obtained from the lumped-
parameter approach to the interpretation of environmental tracer data in a cheap and
effective way.

In conclusion, when estimating the parameters of a system, it should always be
remembered that the lower the number of parameters to be estimated, the more
reliable the result of the modelling usually is (Himmelblau and Bischoff, 1968). A
better fit obtained with a larger number of parameters does not necessarily mean
that a better model has been found. A modelling exercise should always start with
the simplest available model. More sophisticated models with additional parame-
ters should be introduced only if it is not possible to obtain a good fit with a
simple model, or if other information excludes a simpler model. It should also be
remembered that if a single-parameter model yields a good fit, an infinite number
of two-parameter models also yield equally good fits. Therefore, in such situations,
other available information should be used for final selection of the most appropriate
model.
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5.5 The goodness-of-fit of a model

Generally, the goodness of a calculation (model calibration/fitting procedure) can be
calculated using the model efficiency (E) defined by Hornberger, Mills and Herman
(1992):

E =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 −

N∑
i=1

(Ci
f − Ci

obs)
2

N∑
i=1

(Ci
f − Cmean)2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

× 100% (5.132)

where

Cmean =
N∑

i=1

Ci
obs/ N (5.133)

Ci
f and Ci

obs are, respectively, the fitted and observed concentrations at the time ti and
N is the number of observations.

A model efficiency E = 100% indicates an ideal fit of the model to the concentrations
observed, while E = 0 indicates that the model fits the data no better than a horizontal
line through the mean concentration observed. Equation (5.132) is mainly useful for
testing breakthrough curves in artificial tracer tests and the periodic output functions
as it is, for example in the case of stable isotopes.


