Tracers in Hydrology

Modeling

Prof. Dr. C. Külls

Content

Transport models

- Conceptual models:
 - Compartment models
 - Application
 - Limits
- Physical models
 - Transport equation
 - Solutions:
 - analytical
 - numerical

Rhine Alarm Model

Basics and Theory of Solute Transport

Longitudinal and Transversal Dispersion

- Dispersion transveral and longitudinal
- Gauß-shaped curves

Longitudinal and Transversal Dispersion

Dispersion of solutes during transport

Concentration decreases and an increasingly large volume of water is contaminated

- a) Different volecities
- b) Different pore size
- c) Different paths

Quelle: Sächsisches Landesamt für Umwelt und Geologie

Effect of hydrodynamic dispersion

Quelle: Sächsisches Landesamt für Umwelt und Geologie

Figure 10.7

Variation in concentration of a tracer spreading in (a) one or (b) two dimensions in a constant velocity flow system.

Dispersion coefficient

• Dispersion coefficient D (m²/s)

$D=\delta * v_a$

dispersivity δ is scale dependent and describes the heterogeneity

- Laboratory scale
- Field scale
- Regional scale

Transversal / longitudinal Dispersion

- Transversal dispersion 0,1- to 0,2-times longitudinal
- Hydrodynamic dispersion can be determined with column or field experiments

Large and small dispersivity

Dispersion in column experiment

Experimental apparatus to illustrate dispersion in a column. The test begins with a continuous input of tracer $C/C_0 = 1$ at the inflow end. The relative concentration versus time function at the outflow characterizes dispersion in the column.

Immobile zones and dispersion

Zones of mobile and immobile water in a fracture. Source: K. G. Raven, K. S. Novakowski, and P. A. Lapcevic, Water Resources Research 24, no. 12 (1988):2019–32. Published by the American Geophysical Union.

Scales of dispersion

Scale effects

Diffusion

- f_{def}^* Diffusiver Massenfluß im freien Wasservolumen [kg/(m²s)]
- d_0 Diffusionskoeffizient im freien Wasservolumen [m²/s]
- *i_c* Konzentrationsgradient[kg/m⁴]
- C Konzentration des wassergelösten Inhaltsstoffes [kg/m³]
- x Abstand zwischen 2 Konzentrationsmeßpunkten [m]

Diffusion coefficient

Transport equation

$$\frac{\partial}{\partial x} \left(D_{xx} \frac{\partial C}{\partial x} + D_{xy} \frac{\partial C}{\partial y} + D_{xz} \frac{\partial C}{\partial z} - v_x C \right) + \frac{\partial}{\partial y} \left(D_{yx} \frac{\partial C}{\partial x} + D_{yy} \frac{\partial C}{\partial y} + D_{yz} \frac{\partial C}{\partial z} - v_y C \right) + \frac{\partial}{\partial z} \left(D_{zx} \frac{\partial C}{\partial x} + D_{zy} \frac{\partial C}{\partial y} + D_{zz} \frac{\partial C}{\partial z} - v_z C \right) = \frac{\partial C}{\partial t}$$

- D____ dispersion coeffizient
- C concentration

x,y,z direction t time

• v_flow velocity

Dispersion effects

Dispersivity and dispersion coefficient

$$D_L = \alpha_L \quad \nu$$
$$D_T = \alpha_T \quad \nu$$

$$v = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

- D dispersion coeffizient
 α dispersivity
- v flow velocity

Definition for Dispersivity and Tortuosity

$$D_{xx} = D_L \left(\frac{v_x^2}{v^2}\right) + D_T \left(\frac{v_y^2}{v^2}\right) + D_T \left(\frac{v_z^2}{v^2}\right) + \frac{D_m}{\tau}$$

$$D_{yy} = D_T \left(\frac{v_x^2}{v^2}\right) + D_L \left(\frac{v_y^2}{v^2}\right) + D_T \left(\frac{v_z^2}{v^2}\right) + \frac{D_m}{\tau}$$

$$D_{zz} = D_T \left(\frac{v_x^2}{v^2}\right) + D_T \left(\frac{v_y^2}{v^2}\right) + D_L \left(\frac{v_z^2}{v^2}\right) + \frac{D_m}{\tau}$$

$$D_{xy} = D_{yx} = (D_L - D_T) \left(\frac{v_x v_y}{v^2}\right)$$

$$D_{zz} = D_{zx} = (D_L - D_T) \left(\frac{v_x v_z}{v^2}\right)$$

$$D_{zy} = D_{yz} = (D_L - D_T) \left(\frac{v_z v_y}{v^2}\right)$$

- T Tortuosity
- D_Dispersion coefficienten
- L, T for lateral and transversal

3D

3D equation

- 3D Transport
- Translation and dispersion

3D

$$D_{xx} = D_L + \frac{D_m}{\tau}$$
$$D_{yy} = D_T + \frac{D_m}{\tau}$$
$$D_{zz} = D_T + \frac{D_m}{\tau}$$

- v < 0.1 m/Tag :
 - D_L = Dxx
 - D_T = Dyy = Dzz

2D

Boundary conditions

2D

if

$$\frac{\partial C}{\partial z} = 0$$

then

$$D_L \frac{\partial^2 C}{\partial x^2} + D_T \frac{\partial^2 C}{\partial y^2} - v \frac{\partial C}{\partial x} = \frac{\partial C}{\partial t}$$

Boundary conditions

$$C(x = 0, y = 0, t) = \frac{M}{nH} \delta(t) \delta(x) \delta(y)$$
$$C(x, y, t = 0) = 0$$
$$\lim_{x \to 0} C(x, y, t) = 0$$

$$\lim_{(x, y) \to \infty} C(x, y, t) = 0$$

- *M* mass (g)
- ,n' porosity
- *H is thickness*

Analytical solution 2D

$$C(x, y, t) = \frac{M}{nH} \frac{x}{4\pi v t^2 \sqrt{D_L D_T}} \exp\left[-\frac{(x - v t)^2}{4D_L t} - \frac{y^2}{4D_T t}\right]$$

- M is mass (g)
- *n is porosity*
- *H is thickness*
- D_L is longitudinal
 D_T is transversal
 Dispersion

Time equation 2D

$$C(t) = C_m \left(\frac{t_m}{t}\right)^2 \exp\left[-\frac{(x-vt)^2}{4D_L t} + \frac{(x-vt_m)^2}{4D_L t_m}\right]$$

• *tm is residence time*

Transverse dispersion

$$C(y) = C_m \exp\left[-\frac{y^2}{4D_T t_m}\right]$$

- Y is transverse distance
- D_T is transversal dispersion coeffizient
- t_m is residence time

Finally ...

1D

Momentaneous injection

• Dirac-Stoß

1D

if

$$\frac{\partial C}{\partial y} = \frac{\partial C}{\partial z} = 0$$

then:

$$D_L \frac{\partial^2 C}{\partial x^2} - v \frac{\partial C}{\partial x} = \frac{\partial C}{\partial t}$$

- 1D no change in y and z
- Rivers and columns

Boundary conditions 1D

$$C(x = 0, t) = \frac{M}{Q}\delta(t)$$
$$C(x, t = 0) = 0$$
$$\lim C(x, t) = 0$$
$$x \to \infty$$

Solution 1D

$$C(x, t) = \frac{M}{Q} \frac{x}{\sqrt{4\pi D_L t^3}} \exp\left[-\frac{(x - vt)^2}{4D_L t}\right]$$

- Main equation 1D
- C depends on M and 1/Q and $D_L^{\text{-}1/2}$ and $1/t^{3/2}$ and decreases exponentially with x^2

Radial 1D

• Applicable to wells

Residence time

$$t_0 = \frac{x}{v}$$
$$t_0 = \frac{V}{Q}$$

- In proportion to Volume and
- In inverse proportion to discharge

Dispersion parameter (Definition)

$$P_D = \frac{D_L}{vx} = \frac{\alpha_L}{x}$$

- Dispersion coeffizient per velocity
- Dispersivity per length x
- Dispersion parameter corresponds to α/x

Normalized curves

Measurements

Mass curve

Fitting

Multifinalität

Conceptual model

Parallel ADV Models

Dispersion and Diffusion

Example

Rhein

Figure 7.24 Experiment 04/89. Measured tracer breakthroughs at the following river sections (x_n): Ottmarsheim (km 194.4), Neuenburg (km 199.25), Fessenheim (km 211.1), Marckolsheim (km 241), Rheinau (km 256.6), Gerstheim (km 272.5), Strasbourg (km 288.2), Kehl (km 294.1), Gambsheim (km 310.5), Plittersdorf (km 350.3).

Fitting of models

Figure 7.25 Validation of the Upper Rhine river sections: a) postmodelling, Rhine km 241.05–288; b) postmodelling, Rhine km 294.15–340.3; c) forecast improvement, Rhine km 241.05–288.2.

Warning model

Combining advection dispersion and diffusion into dead zones

Brasil

Determining the residence time of water in a surface reservoir in Brasil near Sao Paulo

Summary

- ADV has analytical solutions for 1D, 2D
- Can be used to predict breakthrough
- Can be used to calculate mass M
- Fundamental equations for predicting mass transport