User Tools

Site Tools


en:hydro:greenampt

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
en:hydro:greenampt [2017/10/24 21:51] ckuellsen:hydro:greenampt [2024/04/10 10:02] (current) – external edit 127.0.0.1
Line 1: Line 1:
 ====== Green & Ampt equation ====== ====== Green & Ampt equation ======
  
-At any time, $t$, the penetration of the infiltrating wetting front will be $Z$. Darcy's law can be+The penetration depth of the infiltrating wetting front is $Z$ at any moment in time $t$. If we assume that the wetting front is a sharp Dirac delta-function, Darcy's law can be
 stated as follows: stated as follows:
  
-$$ +$$q = \frac{dI}{dt} = -K_s * \left[\frac{h_f-(h_s+Z)}{Z}\right]$$
-\begin{equation*} +
-q = \frac{dI}{dt} = -K_s * \left[\frac{h_f-(h_s+Z)}{Z}\right] +
-\end{equation*} +
-$$+
  
-where $K_s$ is the hydraulic conductivity corresponding to the surface water content, and $I(t)$ is the +where $K_s$ is the hydraulic conductivity and $I(t)$ is the cumulative infiltration at time $t$ that is equal to $Z*(\theta_s - \theta_0)$ (conservation of mass)
-cumulative infiltration at time $t$, and is equal to $Z*(\theta_s - \theta_0)$. +
  
-Using this relation for $I(t)$ to eliminate $Z$ and performing the integration yields,+Using the above relation for $I(t)$ to eliminate $Z$ and performing the integration yields,
  
-$$ +$$I = K_s*t-(h_f-h_s)*(\theta_s - \theta_0)* log_e \left( 1 - \frac{I}{(h_f-h_s)*(\theta_s-\theta_0)}\right)$$
-\begin{equation*} +
-I = K_s*t-(h_f-h_s)*(\theta_s - \theta_0)* log_e \left( 1 - \frac{I}{(h_f-h_s)*(\theta_s-\theta_0)}\right) +
-\end{equation*} +
-$$+
  
-$$ +with $I(t)$ infiltration amount in [cm]$K_s$ hydr. conductivity in [cm/h]$h_f$ wetting front pressure head (negative) in [cm], $h_s$  water pressure at surface (ponding) in cm$\theta_s$ moisture content at saturation$\theta_0$ antecedent moisture.
-\begin{table} +
-  \centering +
-  \begin{tabular}{ l l l l } +
-with &   $I(t)$ infiltration amount & $[cm]$   \\ +
-     &   $K_s$  & hydr. conductivity  & $[cm/h]$  \\ +
-     &   $h_f$  & wetting front pressure head (negative) & $cm$  \\ +
-     &   $h_s$  water pressure at surface (ponding)    & $cm$  \\ +
-     &   $\theta_s$ moisture content at saturation     & $-$   \\ +
-     &   $\theta_0$ antecedent moisture                & $-$   \\ +
-\end{tabular} +
-\end{table} +
-$$+
  
-In order to solve this equation, we need to bring $I(t)$ to one side of the equation: +In order to solve this implicit equation, we need to bring $I(t)$ to one side of the equation: 
  
-$$ +$$\frac{1}{K_s}*\left[I -(h_f-h_s)*(\theta_s - \theta_0)* log_e \left( 1 - \frac{I}{(h_f-h_s)*(\theta_s-\theta_0)}\right)\right] = t $$
-\begin{equation*} +
-\frac{1}{K_s}*\left[I -(h_f-h_s)*(\theta_s - \theta_0)* log_e \left( 1 - \frac{I}{(h_f-h_s)*(\theta_s-\theta_0)}\right)\right] = t +
-\end{equation*} +
-$$+
  
-The R-program to calculate infiltration amounts with Green & Ampt looks like this:+We can then insert $I$ can calculate $t$ - we calculate the time that corresponds to a given infiltration amount. An R-code to calculate infiltration amounts with Green & Ampt looks like this:
  
-<code S|Greem-Ampt.R> +<code S |Green-Ampt.R>
-        <<GreenAmpt, fig=TRUE, height=4.0, echo=FALSE>>=+
         I    <- seq(0,100,by=1.0)         I    <- seq(0,100,by=1.0)
         t0   <- 0.05          t0   <- 0.05 
Line 55: Line 29:
         t   <- 1/Ks*((I-(hf-hs)*(ts-t0))*log(1-(I/((hf-hs)*(ts-t0))))) # hours         t   <- 1/Ks*((I-(hf-hs)*(ts-t0))*log(1-(I/((hf-hs)*(ts-t0))))) # hours
         plot(t,I,xlim=c(0,6),ylim=c(0,25),xlab="t [hour]", ylab="I in [cm]")         plot(t,I,xlim=c(0,6),ylim=c(0,25),xlab="t [hour]", ylab="I in [cm]")
-        @ 
 </code> </code>
/usr/www/users/uhydro/doku/data/attic/en/hydro/greenampt.1508874718.txt.gz · Last modified: 2024/04/10 10:14 (external edit)