Saturated vapour pressure

The saturated vapour pressure can be calculated using a number of equations. A commonly used equation is that proposed by WMO in the Guide to Meteorological Instruments and Methods of Observation (CIMO Guide by WMO, 2008) ${ }^{1)}$

```
\(\$ \$ \mathrm{e} s=0.61120 * \exp\) left ( \(\mathrm{ffrac}\{17.62 * \mathrm{~T}\}\{243.12+\mathrm{T}\}\) \right } ) \$ \$
```

where the temperature is given in degress Celsius and the resulting vapour pressure is in kPa . This type of equation can be found in different varieties, with slightly different coefficients (see e.g. ${ }^{2)}$)
sat-vap.py

```
from pylab import *
def es(t):
    e = 0.6112*exp(17.62*t/(243.12+t))
    return e
t = arange(0.0, 35.0, 0.5)
plot(t, es(t))
ytext = ylabel('saturated vapour pressure in kPa')
xtext = xlabel('temperature')
show()
```

1 mb corresponds to 100 Pa (Pascal) or to 1 hPa (hecto-Pascal) or to 0.1 kPa (kPascal). The normal atmospheric pressure (atm) is about 1013 mb or 1013 hPa or $101,3 \mathrm{kPa}$. The above formula gives the vapour pressure in kPa . A note of care: There is significant confusion about formulae, coefficients and units in the existing literature.

[^0]
From:

https://hydro-wiki.de/ -

Permanent link:

https://hydro-wiki.de/en/hydro/saturated-vapour-pressure?rev=1475535616
Last update: 2024/04/10 10:15

[^0]: ${ }^{1)}$ Guide to Meteorological Instruments and Methods of Observation, WMO Publication No 8, 7th edition, Geneva, 2008.
 ${ }^{2)}$ Buck Research Manual (1996); updated equation from Buck, A. L., New equations for computing vapor pressure and enhancement factor, J. Appl. Meteorol., 20, 1527-1532, 1981

