Benutzer-Werkzeuge

Webseiten-Werkzeuge


en:hydro:greenampt

Unterschiede

Hier werden die Unterschiede zwischen zwei Versionen der Seite angezeigt.

Link zu der Vergleichsansicht

Beide Seiten, vorherige ÜberarbeitungVorherige Überarbeitung
Nächste Überarbeitung
Vorherige Überarbeitung
Letzte ÜberarbeitungBeide Seiten, nächste Überarbeitung
en:hydro:greenampt [2017/10/24 21:50] ckuellsen:hydro:greenampt [2018/05/15 20:41] ckuells
Zeile 1: Zeile 1:
 ====== Green & Ampt equation ====== ====== Green & Ampt equation ======
  
-At any time, $t$, the penetration of the infiltrating wetting front will be $Z$. Darcy's law can be+The penetration depth of the infiltrating wetting front is $Z$ at any moment in time $t$. If we assume that the wetting front is a sharp Dirac delta-function, Darcy's law can be
 stated as follows: stated as follows:
  
-$$ +$$q = \frac{dI}{dt} = -K_s * \left[\frac{h_f-(h_s+Z)}{Z}\right]$$
-\begin{equation*} +
-q = \frac{dI}{dt} = -K_s * \left[\frac{h_f-(h_s+Z)}{Z}\right] +
-\end{equation*} +
-$$+
  
-where $K_s$ is the hydraulic conductivity corresponding to the surface water content, and $I(t)$ is the +where $K_s$ is the hydraulic conductivity and $I(t)$ is the cumulative infiltration at time $t$ that is equal to $Z*(\theta_s - \theta_0)$ (conservation of mass)
-cumulative infiltration at time $t$, and is equal to $Z*(\theta_s - \theta_0)$. +
  
-Using this relation for $I(t)$ to eliminate $Z$ and performing the integration yields,+Using the above relation for $I(t)$ to eliminate $Z$ and performing the integration yields,
  
-$$ +$$I = K_s*t-(h_f-h_s)*(\theta_s - \theta_0)* log_e \left( 1 - \frac{I}{(h_f-h_s)*(\theta_s-\theta_0)}\right)$$
-\begin{equation*} +
-I = K_s*t-(h_f-h_s)*(\theta_s - \theta_0)* log_e \left( 1 - \frac{I}{(h_f-h_s)*(\theta_s-\theta_0)}\right) +
-\end{equation*} +
-$$+
  
-$$ +with $I(t)$ infiltration amount in [cm]$K_s$ hydr. conductivity in [cm/h]$h_f$ wetting front pressure head (negative) in [cm], $h_s$  water pressure at surface (ponding) in cm$\theta_s$ moisture content at saturation$\theta_0$ antecedent moisture.
-\begin{table} +
-  \centering +
-  \begin{tabular}{ l l l l } +
-with &   $I(t)$ infiltration amount & $[cm]$   \\ +
-     &   $K_s$  & hydr. conductivity  & $[cm/h]$  \\ +
-     &   $h_f$  & wetting front pressure head (negative) & $cm$  \\ +
-     &   $h_s$  water pressure at surface (ponding)    & $cm$  \\ +
-     &   $\theta_s$ moisture content at saturation     & $-$   \\ +
-     &   $\theta_0$ antecedent moisture                & $-$   \\ +
-\end{tabular} +
-\end{table} +
-$$+
  
-In order to solve this equation, we need to bring $I(t)$ to one side of the equation: +In order to solve this implicit equation, we need to bring $I(t)$ to one side of the equation: 
  
-$$ +$$\frac{1}{K_s}*\left[I -(h_f-h_s)*(\theta_s - \theta_0)* log_e \left( 1 - \frac{I}{(h_f-h_s)*(\theta_s-\theta_0)}\right)\right] = t $$
-\begin{equation*} +
-\frac{1}{K_s}*\left[I -(h_f-h_s)*(\theta_s - \theta_0)* log_e \left( 1 - \frac{I}{(h_f-h_s)*(\theta_s-\theta_0)}\right)\right] = t +
-\end{equation*} +
-$$+
  
-The R-program to calculate infiltration amounts with Green & Ampt looks like this:+We can then insert $I$ can calculate $t$ - we calculate the time that corresponds to a given infiltration amount. An R-code to calculate infiltration amounts with Green & Ampt looks like this:
  
-<code S|Greem-Ampt.R> +<code S |Green-Ampt.R>
-        <<GreenAmpt, fig=TRUE, height=4.0, echo=FALSE>>=+
         I    <- seq(0,100,by=1.0)         I    <- seq(0,100,by=1.0)
         t0   <- 0.05          t0   <- 0.05 
/usr/www/users/uhydro/doku/data/pages/en/hydro/greenampt.txt · Zuletzt geändert: 2024/04/10 10:02 von 127.0.0.1