User Tools

Site Tools


en:lectures:tracerscript

Tracerscript

Mass balance, species, phases and charge balance

In the following, notions on equilibrium chemistry and on the hydrochemical evolution of groundwater are introduced. Equilibrium chemistry can be used to quantify thermodynamic limits for the concentration of dissolved species in a defined aqueous system. In some cases, the hydrochemical evolution of a certain groundwater type can be identified by inverse methods, yielding information on the recharge environment (lithology) and type (slow soil infiltration or quick infiltration through sinkholes).

The equilibrium concept provides a description of the final state of thermodynamic reactions after an undefined equilibration time te. At any time t < te, reaction kinetics are still relevant for the concentration of different species in the system. The relation between the residence time of a given water volume and the rate of a solution/precipitation reaction determines whether the concentrations are still controlled kinetically (flow velocity control) or by equilibrium conditions (mass balance control). Further information on mineral-water interface kinetics can be found in HOCHELLA & WHITE (1990).

The concept of equilibrium chemistry, reviewed among others by DREVER (1988), APPELO & POSTMA (1996), is based on the chemical law of mass action. This law states that for a reaction between the reactants A, B and the products C, D such as the distribution of species converges towards an equilibrium state, characterized by the equilibrium constant K

$K=\frac{{A}^a*{B}^b}{{C}^c*{D}^d}}$

where a, b, c, d represent the stochiometric constants of the reaction and where the respective activities are given in brackets. Equilibrium constants can be calculated thermodynamically (STUMM & MORGAN, 1995) and are listed in libraries of computer codes for equilibrium calculations in aquatic solutions such as PHREEQE (PARKHURST ET AL., 1990).

The equilibrium constant depends on the ambient temperature. In general, thermodynamic data are given for standard conditions of 25° C; corrections are made using the Van’t Hoff equation (APPELO & POSTMA, 1996: 61).

Concentrations C of elements measured in the laboratory need to be converted to activities [C] before being introduced into mass balance calculus. This is so, because in an aquatic solution the reactivity of ions is reduced by electrostatic interactions (i.e. shielding effects) with other ions. These effects become more important with increasing salinity. Therefore, ion concentrations need to be corrected by a dimensionless activity coefficient γ, hence [C]= γ C.

The activity coefficient γ is a function of the ionic strength I of the solution, defined as

$log_{gamma}=-A*{z_i}^2*(({\sqrt{I}/{1+\sqrt{I}})-0.3*I})$

with mi = molar concentration (mol/l) and zi = charge of ion. In normal hydrogeological systems (no brines) with low pressures and temperatures, the Davies equation can be used, stating that for an ion with charge zi, dissolved in a solution with an ionic strength I, the activity coefficient is:

$I=0.5*\sum({m_i*{z_i}^2})$

A is a temperature factor, corresponding to A=0.5085 for 25°C.

Methods for the quantitative evaluation of data

Mass balance based methods: the Chloride method

Chloride is deposited as dry deposition and as a dissolved constituent of rainwater. Both components form the total deposition of chloride, written as mass per m² per year. Most of the chloride deposited is of oceanic origin, deriving from sea spray and advective transport of aerosols. Oceanic chloride is dominant within 300 to 700 km from the coast. However, in areas, where significant deflation of dust from dry salt pans takes place, continental sources of chloride also become important . Most plants do not take up chloride in significant amounts. Therefore it is concentrated both by direct evaporation from the soil and selective uptake of water by plants. For a simple steady state approach it is assumed that the sum of wet and dry deposition of chloride at the top of a soil profile equals the total mean outflow of chloride from the root zone (ALLISON & HUGHES, 1983; ALLISON ET AL., 1985):

$\overline{P*C}+\overline{D}=\overline{R*Cs}$

where P is mean annual rainfall, C the mean chloride concentration of rainfall, and D is dry deposition. The right hand side of the equation represents the flux of chloride out of the root zone as the product of mean annual recharge R and chloride concentration of the soil water Cs. The average products can be rewritten as:

$\overline{P}*\overline{C+D}=\overline{R}*\overline{C_s}$

provided that the covariances between annual rainfall and annual chloride deposition, and between recharge and soil-water chloride concentrations are close to zero which simplifies the equations. Mean annual recharge can then be expressed as a function of mean annual rainfall, mean concentration of chloride in the rainfall, dry deposition, and measured chloride concentrations in the soil water:

$\overline{R}={\overline{P}*\overline{C+D}}/\overline{C_s}$

Under ideal steady state conditions, an increase of chloride concentrations in the soil water within the root zone and a constant chloride concentration profile beneath the root are to be expected. However, bulge-like profiles and other deviations from the theoretical shape have been observed. These may result from:

  • preferred flow paths (see macropore flow above),
  • changes in the recharge rate due to climatic or environmental changes, or
  • diffusion

Only in cases where chloride concentration exceeds 8,000 g/m³ diffusion will start to play a more important role.

A simplified approach is based on the chloride concentration within the saturated zone. For this approach chloride concentration in the groundwater is used as a substitute value for Cs and the recharge rate is determined accordingly. Problems will arise in cases of lateral inflow of groundwater at the sampling location, and solution of salt or mixing with deeper groundwater. This method has therefore been used for validation only. A combination of chloride concentrations in the groundwater with soil chloride profiles can be very instructive, as shown by WRABEL (1999). Macropore flow bypassing the soil matrix may dilute the signal from direct infiltration recorded in the soil chloride profile. In such cases, the comparison of chloride profiles in the unsaturated zone and in the groundwater can be used to estimate the percentage of macropore/bypass flow.

References

ABDULRAZZAK M. J. & MOREL-SEYTOUX (1983): Recharge from an ephemeral stream following wetting front arrival to water table. Water Resources Research, 19 (1): 194-200

ADAR E. M. (1984): Quantification of aquifer recharge distribution using environmental isotopes and regional hydrochemistry. Doctoral thesis, Univ. of Arizona, Tucson, United States, 269 p.

ADAR E. M. (1996): Quantitative evaluation of flow systems, groundwater recharge and transmissivities using environmental tracers. IAEA TECDOC, 910: 113-154

ADAR E. M. & NEUMAN S. P. (1988): Estimation of spatial recharge distribution using environmental isotopes and hydrochemical data. II, Application to Aravaipa Valley in southern Arizona, U. S. A. J. Hydrol., 97(1-4): 279-302

ADAR E. M. & SOREK S. (1990): Numerical method for aquifer parameter estimation utilizing environmental tracers in transient flow system. In: ModelCARE 1990 - calibration and reliability in groundwater modelling (ed. by Karel Kovar). IAHS-AISH Publ., 195: 135-148

ADAR E. M., NEUMAN S. P. & WOOLHISER D. A. (1988): Estimation of spatial recharge distribution using environmental isotopes and hydrochemical data. I, Mathematical model and application to synthetic data. J. Hydrol., 97 (1-4): 251-277

ADAR E. M., ISSAR A. S., SOREK S. & GEV I. (1992): Modelling of flow pattern in a shallow aquifer affected by reservoirs. I, Evaluation of the flow system by environmental tracers. In: Transport in Porous Media (D. Reidel Publishing Company. Dordrecht, International) 8: 1-20

ADAR E. M., DODY A., GEYH M. A, YAIR A., YAKIREVICH A. & ISSAR A. S. (1998): Distribution of stable isotopes in arid storms. 1. Relation between the distribution of isotopic composition in rainfall and in the consequent runoff. Hydrogeology Journal, 6: 50-65

AGNEW C. & ANDERSON E. (1992): Water Resources in the Arid Realm. Routledge, 329 p.

ALLISON G. B. (1989): A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge. In: I. Simmers (ed. ) Estimation of Natural Groundwater Recharge. NATO Advanced Sciences Institutes Series C: 49-72

ALLISON G. B. & HUGHES M. W. (1983): The use of natural tracers as indicators of soil water movements in a temperate semi-arid region. J. Hydrol., 60: 157-173

ALLISON G. B., STONE W. J. & HUGHES M. W. (1985): Recharge in karst and dune elements of a semi-arid landscape as indicated by natural isotopes and chloride. J. Hydrol., 76: 1-25

ALLISON G. B., GEE G. W. & TYLER S. W. (1994): Recharge in arid and semi-arid regions. . Soil Science Society of America Journal, Vol 58 (Proc. Symp. 30. Oct. 1991, Denver, CO).

APPELO C. A. J. & POSTMA D. (1996): Geochemistry, groundwater and pollution. Balkema, Rotterdam, (third corrected print, bound), 536 p.

BAERTSCHI P. (1976): Absolute 18O content of Standard Mean Ocean Water. Earth and Plantary Science Letters, 31: 341-344

BAHRENBERG G., GIESE E. & NIPPER J. (1992): Statistische Methoden in der Geographie 2. Teubner Studienbücher Geographie, Stuttgart, 412 p.

BALEK J. (1988): Groundwater recharge concepts. In: I. Simmers (ed. ) Estimation of Natural Groundwater Recharge. NATO Advanced Sciences Institutes Series C: 3-9

BARD E., HAMELIN B., FAIRBANKS R. G. & ZINDLER A. (1990): Calibration of the 14C time scale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature, 345: 405

BEAR J. (1972): Dynamics of Fluids in Porous Media. New York, American Elsevier Publishing Company

BEAUMONT P. (1989): Drylands - Environmental Management and Development. Routledge, 536 p.

BECKER A. & BRAUN P. (1999): Disaggregation, aggregation and spatial scaling in hydrological modelling. J. Hydrol., 217: 239-252

BESBES M. & DE MARSILY G. (1984): From infiltration to recharge: use of a parametric transfer function. J. Hydrol., 74: 271-292

BESBES M., DELHOMME J. P. & DE MARSILY G. (1978): Estimating recharge from ephemeral streams in arid regions, a case study at Kairouan, Tunisia. Water Resources Research, 14(2): 281-290

BEVEN K. & GERMANN P. (1982): Macropores and Water Flow in Soils. Water Resources Research, Vol. 18: 1311-1325

BLÜMEL W. D. (1982): Calcretes in Namibia and SE-Spain, relations to substratum, soil formation and geomorphic factors. Yaalon D. H. (ed. ) Aridic Soils and Geomorphic Processes. Catena Suppl., 1, Braunschweig: 67-82

BOOCOCK C. & VAN STRATEN (1962): Notes on the geology and hydrology of the central Kalahari region. Bechuanaland Protectorate. Trans. Geol. Soc. S. Afr., 65: 125-171

BOUGHTON W. C. & STONE J. J. (1985): Variation of runoff with watershed area in a semi-arid location. J. Arid Environments, 9 (1): 13-25

BREDENKAMP D. B., VAN RENSBURG H. J., VAN TONDER G. J. & BOTHA L. J. (1995): Manual on Quantitative Estimation of Groundwater Recharge Based on Practical Hydro-Logical Methods. Water Research Comission, Pretoria, 363 p.

BROOK G. A., FOLKOFF M. E. & BOX E. O. (1983): A world model of soil carbon dioxide. Earth Surf. Proc., 8: 79-88

BROWN C. E. (1998): Applied Multivariate Statistics in Geohydrology and Related Sciences. Springer Verlag, 248 p.

BUCKINGHAM E. (1907): Studies on the Movement of Soil Moisture. USDA Bur. Soil Bull., 38

BUNDESANSTALT FÜR GEOWISSENSCHAFTEN UND ROHSTOFFE - BGR (1997): German-Namibian Groundwater Exploration Project. Reports on Hydrogeological and Isotope Hydrological Investigations. Technical Cooperation Project No. 89.2034.0, Hannover

BUSCHE D. & ERBE W. (1987): Silicate karst landforms of the southern Sahara (north-eastern Niger and southern Libya). In: Laterites; some aspects of current research. Zeitschrift f. Geomorphologie. Supplementband, 64, 55-72

BUSCHE D. & SPONHOLZ B. (1990): Silikatkarst in der südlichen Sahara; Einflußgröße für das Grundwasser? (Siliceous karst in the southern Sahara; major influence for ground water?). Zentralblatt für Geologie und Palaeontologie, Teil I: Allgemeine, Angewandte, Regionale und Historische Geologie, 4, Schweizerbart'sche Verlagsbuchhandlung. Stuttgart, Federal Republic of Germany, 425 p.

CAMPANA M. E. & SIMPSON E. S. (1984): Groundwater residence times and recharge rates using a discrete-state compartment model and 14C data. J. Hydrol., 72: 171-185

CLARK I. & FRITZ P. (1997): Environmental Isotopes in Hydrology. CRC Press, 328 p.

CRAIG H. (1961): Isotopic variations in meteoric waters. Science, 113: 1702-1703

CRERAR S., FRY R. G., SLATER P. M., VAN LANGENHAVE G. & WHEELER D. (1988): An unexpected factor affecting recharge from ephemeral river flows in SWA/Namibia. I. Simmers (ed. ) Estimation of Natural Groundwater Recharge, D. Reidel Publ.: 11-28

DACHROTH W. & SONNTAG C. (1983): Grundwasserneubildung und Isotopendatierung in Südwestafrica/Namibia. Z. dt. geol. Ges., 134: 1013-1041

DARCY H. (1856): Les Fontaines Publiques de la Ville de Dijon. Paris: Victor Dalmont.

DE BEER J. H. & BLUME J. (1983): Geophysical and Hydrogeological Investigations of the Ground Water Resources of Hereroland SWA/Namibia. Geophysics Devision, National Physical Research Laboratory, Council of Scientific and Industrial Research, Pretoria, South Afric, 31 p.

DE BEER J. H. & BLUME J. (1985): Geophysical and hydrogeological investigations of the ground water resources of western Hereroland, South West Africa/Namibia. Trans. Geol. Soc. S. Afr., 88: 483-493

DEPARTMENT OF WATER AFFAIRS - DWA (1988): Evaporation Map for Namibia. Rep. of Namibia, Ministry of Agriculture, Water and Rural Development. Hydrology Division, Report No: 11/1/8/1/H1

DEPARTMENT OF WATER AFFAIRS - DWA (1992a): Updated Isohyetal Rainfall Map for Namibia. Rep. of Namibia, Ministry of Agriculture, Water and Rural Development, Compiled by Hydrology Division, Report 11/1/8/H5, File 11/1/8/1

DEPARTMENT OF WATER AFFAIRS - DWA (1992b): Unit Runoff Map for Namibia. Rep. of Namibia, Ministry of Agriculture, Water and Rural Development. Hydrology Division, File 11/1/5/1, Report 11/1/5/1/H2

DEPARTMENT OF WATER AFFAIRS - DWA (1993): Reconnaissance Report on Water Supply to Settlements along the Omuramba Omatako between Goblenz - Okakarara and Okakarara - Central Reservoir Pipelines. Rep. of Namibia, Ministry of Agriculture, Water and Rural Development. Geohydrology Division, File 13/5/1/2, Report 2530/5/1/2/P3

DEPARTMENT OF WATER AFFAIRS - DWA (1997): Goblenz State Water Scheme. Memorandum on Drilling and Test Pumping. Rep. of Namibia, Ministry of Agriculture, Water and Rural Development. Internal Report, File 12/8/1/1

DE VRIES H. H. & VAN HOYER M. (1988): Groundwater Studies in semi-arid Botswana - a review. In: I. Simmers (ed. ) Estimation of Natural Groundwater Recharge. NATO Advanced Sciences Institutes Series C: 339-348

DINÇER T., AL-MUGRIN A. & ZIMMERMANN U. (1974): Study of the infiltration and recharge through the sand dunes in arid zones with special reference to the stable isotopes and thermonuclear Tritium. J. Hydrol., 23:79-109

DODY A., ADAR E. M., YAKIREVICH A., GEYH M. A. & YAIR A. (1995): Evaluation of depression storage in an arid rocky basin using stable isotopes of oxygen and hydrogen. IAHS-AISH Publ. 232: 417-427

DREVER J. I. (1988): The geochemistry of natural waters. 2nd ed. Prentice-Hall, 437 pp.

EICHINGER L., MERKEL B., NEMETH G., SALVAMOSER J. & STICHLER W. (1984): Seepage and velocity determinations in unsaturated quaternary gravel. In: Recent investigations in the Zone of Areation, Proc. Munich, Oct. 1984: 303-313

FONTES J. CH. & GARNIER J. M. (1979): Determination of the initial 14C activity of total dissolved carbon: A review of existing models and a new approach. Water Resources Research, 15: 399-413

FOSTER S. S. D, BATH A. H., FARR J. L. & LEWIS W. J. (1982): The likelihood of active groundwater recharge in the Botswana Kalahari. J. Hydrol., 55: 113-136

FROMMURZE H. F. (1953): Hydrological research in arid and semi-arid areas in the Union of South Africa and Angola. Rev. Res., Arid Zone Hydrol., U. N. E. S. C. O., Paris: 58-77

GANSSEN R. (1963): Südwest-Afrika, Böden und Bodenkultur - Versuch einer Klimapedologie warmer Trockengebiete. Verlag von Dietrich Reimer, Berlin, 160 p.

GAT Y. (1995): The relationship between the isotopic composition of precipitation, surface runoff and groundwater for semi-arid and arid zones. IAHS Publ. No. 232 (Application of Tracers in Arid Zone Hydrology, Proc. of the Vienna Symposium, August 1994, ed. by E. Adar & C. Leibundgut): 409-416

GAT J. R. & GONFIANTINI R. (1981): Stable isotope hydrology. Deuterium and Oxygen-18 in the Water Cycle. A monograph prepared under the aegis of the IAEA/UNESCO working group on nuclear techniques in hydrology of the International Hydrological Programme (IHP). Technical Reports Series, 210, Vienna, 337 p.

GEE G. W. & HILLEL D. (1988): Groundwater Recharge in Arid Regions: Review and Critique of Estimation Methods. Hydrological Processes, 2: 255-266

GEHRELS J. C. & VAN DER LEE J. (1990): Rainfall and recharge a critical analysis of the atmosphere-soil-groundwater relationship in Kanye, semi-arid Botswana. M. Sc. Thesis, Free Univ. Amsterdam.

GEYH M. A. (1995): Geochronologische Aspekte Paläohydrologischer und Paläoklimatischer Befunde in Namibia. Geomethodica (Basel, Veröff. = 20 BGC), 20: 75-99

GEYH M. A. & SCHLEICHER H. (1990): Absolute age determination; physical and chemical dating methods and their application. Springer Verlag. Berlin, Federal Republic of Germany, 503 p.

GEYH M. A. & PLOETHNER D. (1997): Isotope Hydrological Study in Eastern Owambo, Etosha Pan, Otavi Mountain Land and Central Omatako catchment including Waterberg Plateau. German-Namibian Groundwater Exploration Project. Technical Cooperation Project No. 89. 2034. 0., Follow-up report, Vol. 2, Hannover, 34 p.

GIESKE A. (1992): Dynamics of groundwater recharge. A case study in semi-arid Botswana. Freie Univ. Amsterdam, 289 S., Enschede.

GIESKE A., SELAOLO E. & MCMULLAN S. (1990): Groundwater recharge through the unsaturated zone of southeastern Botswana: a study on chlorides and environmental isotopes. Regionalization in Hydrology (Proc. of the Ljubijana Symposium, April 1990). IAHS Publ., 191: 33-44

GONFIANTINI R. (1986): Environmental isotopes in lake studies. In: Handbook of Environmental Isotope Geochemistry (ed. by P. Fritz and J. Ch. Fontes), Vol. 2, The Terrestrial Environment, B. Elsevier, Amsterdam, The Netherlands: 113-168

GUNTHORPE R. J. (1983): Coal exploration project - Progress Report (Geological Survey Files).

GUNTHORPE R. J. (1987): Coal exploration project - Final Report (Geological Survey Files).

HAGEMAN R., NIEF G. & ROTH E. (1970): Absolute isotopic scale for deuterium analysis in natural waters. Absolute D/H ratio for SMOW. Tellus, 22: 712-715

HAUDE W. (1954): Zur praktischen Bestimmung der aktuellen und potentiellen Evaporation nd Evapotranspiration. Mitteilungen des deutschen Wetterdienstes, 8, Bad Kissingen, 22 S.

HENDRICKX J. M. H. & WALKER G. R. (1997): Recharge from precipitation. In: Recharge of Phreatic Aquifers in (Semi-) Arid Areas (ed. Ian Simmers): 19-111

HEYNS P. (1996): Water Resources Management in Namibia. Department of Water Affairs, Namibia, Internal Memorandum, 15 p.

HOCHELLA M. F. & WHITE A. F. (1990): Mineral-water interface geochemistry. Reviews in Mineralogy, 23, Mineral Soc. Am., 603 p.

HOEFS J. (1997): Stable Isotope Geochemistry. Springer (4th ed. ), 201 p.

HORTON R. E. (1940): An Approach toward a Physical Interpretation of Infiltration-Capacity. Soil Sci. Soc. Am. J., 5: 399-417

HUBER B. (1992): Der Einfluß des Trenngefüges auf die Grundwasserströmung in Kluftgrundwasserleitern. Hydrogeologie und Umwelt, 5, Univ. Würzburg/Germany, 293 p.

HUYSER D. J. (1979a): ‘N intensiewe opname van waterbronne in die res van die distrik Otjiwarongo. 47ste Veradering van die Loodskomitee vir Waternavorsing in Suidwes-Afrika. SWA Streeklaboratorium, Nasionale Instituut vir Waternavorsing, Wetenskaplike en Nywerheidnavoringsgraad. Windhoek, 1979.

HUYSER D. J. (1979b): ‘N intensiewe opname van waterbronne in die res van die distrik Grootfontein. 47ste Veradering van die Loodskomitee vir Waternavorsing in Suidwes-Afrika. SWA Streeklaboratorium, Nasionale Instituut vir Waternavorsing, Wetenskaplike en Nywerheidnavoringsgraad. Windhoek, 1979.

IAEA - INTERNATIONAL ATOMIC ENERGY AGENCY (1969-1994): Environmental Isotope Data World Survey of Isotope Concentration in Precipitation:

No. 1 (STI/DOC/10/96) 1953-1963, 421 pages, published in 1969

No. 2 (STI/DOC/10/117) 1964-1965, 404 pages, published in 1970

No. 3 (STI/DOC/10/129) 1966-1967, 421 pages, published in 1971

No. 4 (STI/DOC/10/147) 1968-1969, 404 pages, published in 1973

No. 5 (STI/DOC/10/165) 1970-1971, 421 pages, published in 1975

No. 6 (STI/DOC/10/192) 1972-1975, 404 pages, published in 1979

No. 7 (STI/DOC/10/226) 1976-1979, 421 pages, published in 1983

No. 8 (STI/DOC/10/264) 1980-1983, 404 pages, published in 1986

No. 9 (STI/DOC/10/311) 1984-1987, 188 pages, published in 1990

No. 10 (STI/DOC/10/371) 1988-1991, 214 pages, published in 1994

IAEA - INTERNATIONAL ATOMIC ENERGY AGENCY (1996): Manual on Mathematical Models in Isotope Hydrogeology. IAEA TECDOC, 910, 207 p.

JONES C. R. (1982): The Kalahari of Southern Africa. In: The Geological Story of the World’s Deserts (ed. by T. L. Smiley). Striae, 17: 20-34

KAUFMANN S. & LIBBY W. F. (1954): The natural distribution of tritium. Physical Review, 93: 1337-1344

KELLER S. & VAN HOYER M. (1992): Erkundung und Bewirtschaftung von präkambrischen Karstaquiferen im südlichen Afrika. Z. dt. geol. Ges., 143: 277-290

KÜLLS C., LEIBUNDGUT C., SCHWARZ U. & SCHICK A. (1994): Channel infltration study using dye tracers. IAHS Publ., No. 232: 429-436

KÜLLS C., CONSTANTINOU C. & UDLUFT, P. (2000): Dynamics of groundwater recharge in natural environments and mining areas: Case studies from Cyprus. (Conf. Min. Wealth Athens, in print)

KÜLLS C. & UDLUFT P. (2000): Mapping the availability and dynamics of groundwater recharge Part II: Case studies (Congress Regional Geological Cartography and Information Systems, München, in print)

LERNER D. N., ISSAR A. S. & SIMMERS I. (1990): Groundwater Recharge - A Guide to Understanding and Estimating Natural Recharge. IAH, International Contributions to Hydrogeology, Vol. 8

LEVIN M., GAT J. R. & ISSAR A. (1980): Precipitation, flood and groundwaters of the Negev Highlands: an isotopic study of desert hydrology. Arid Zone Hydrology: Investigations with isotope techniques. Proc. Adv. Group Meeting, Vienna, IAEA: 3-22

LLOYD J. W. (1986): A Review of Aridity and Groundwater. Hydrological Processes, Vol. 1: 63-78

MAIDMENT D. R. (1992): Handbook of Hydrology. MacGraw-Hill

MAINARDY H. (1999): Grundwasserneubildung in der Übergangszone zwischen Festgesteinsrücken und Kalahari-Lockersedimentüberdeckung (Namibia). Hydrogeologie und Umwelt, 17, 145 p. (PhD, Univ. Würzburg)

MAJOUBE M. (1971): Fractionnement en oxygène-18 et en deutérium entre l'eau et sa vapeur. J. Chim. Phys., 197: 1423

MARTIN H. (1961): Hydrology and water balance of some regions covered by Kalahari sands in South West Africa. Proc. Inter-African Conference on Hydrology, Nairobi 1960

MAZOR E. (1982): Rain recharge in the Kalahari - A note on some approaches to the problem. J. Hydrol., 55: 137-144

MAZOR E., BIELSKY M., VERHAGEN B. TH., SELLSCHOP J. P. F., HUTTON L. & JONES M. T. (1980): Chemical composition of groundwaters in the vast Kalahari flatland. J. Hydrol., 48: 147-165

MILLER R. MCG. (ED. ) (1983): Evolution of the Damara Orogen of SW Africa/Namibia. Special Publ. of the Geological Society of South Africa, No. 11, 515 p.

MOORSOM R., FRANZ J. & MUPOTOLA M. (1995): Coping with Aridity - Drought Impact and Preparedness in Namibia - Experiences from 1992/93. Brandes & Apsel Verl., 250 p.

MORSE J. W. & MACKENZIE F. J. (1990): Geochemistry of sedimentary carbonates. Elsevier, Amsterdam.

MÜNNICH K. O. (1968): Isotopendatierung von Grundwasser. Naturwissenschaften, 55: 158-163

PARKHURST D. L., THORSTENSON D. C. & PLUMMER L. N. (1990): PHREEQE - A computer program for geochemical calculations. US Geol. Surv. Water Res. Inv., 80-96

PASSARGE S. (1904): Die Kalahari. Reimer, Berlin: 823 p.

PEARSON F. J. (1965): Use of 13-C/12-C ratios to correct radiocarbon ages of material initially diluted by limestone. In: Proc. 6th Intern. Conf. Radiocarbon and Tritium, Pulman, Washington: 357

PLOETHNER D., SCHMIDT G. A., KEHRBERG S. & GEYH M. A. (1997): Hydrogeology and Isotope Hydrology of the Otavi Mountain Land and its Surroundings (KARST_01 and KARST_02). Bundesanstalt für Geowissenschaften und Rohstoffe. German-Namibian Groundwater Exploration Project (Technical Cooperation No. 89. 2034. 0). Reports on hydrogeological and isotope hydrological investigations, Vol. D-III: 65 p.

PLUMMER L. N., VACHER H. L., MACKENZIE F. T., BRICKER O. P. & LAND L. S. (1976): Hydrogeochemistry of Bermuda: a case history of groundwater diagenesis of biocalcarenites. Geol. Soc. Am. Bull., 87: 1301-1316

PRIESTLEY C. H. B. & TAYLOR R. J. (1972): On the assessment of surface heat flux and evaporation using large scale parameters. Mon Weather Rev, 100: 81-92

ROSENTHAL E., ADAR E., ISSAR A. S. & BATELAAN O. (1990): Definition of groundwater flow patterns by environmental tracers in the multiple aquifer system of southern Arava Valley, Israel. J. Hydrol., 117 (1-4): 339-368

ROZANSKI K., ARAGUÁS-ARAGUÁS L. & GONFIANTINI R. (1993): Isotopic patterns in modern global precipitation. In: Continental Isotope Indictors of Climate. American Geophysical Union Monograph.

RUSHTON K. R. (1988): Numerical and conceptual models for recharge estimation in arid and semi-arid zones. In: I. Simmers (ed. ) Estimation of Natural Groundwater Recharge. NATO Advanced Sciences Institutes Series C: 223-238

SAMI K. & HUGHES D. A. (1996): A comparison of recharge estimates to a fractured sedimentary aquifer in South Africa from a chloride mass balance and an integrated surface-subsurface model. J. Hydrol., 179:111-136

SACS - SOUTH AFRICAN COMMITTEE FOR STRATIGRAPHY) (1980): Stratigraphy of South Africa, Part 1. Lithostratigraphy of the Republic of South Africa, SWA/Namibia and the Republics of Boputhatswana, Transkei and Venda. Handbook of the Geological Survey of South Africa, 8.

SCHMIDT G. A. (1997a): Otavi Mountain Land: Data Base Evaluation and Conceptual Modelling KARST_01 & KARST_02. Bundesanstalt für Geowissenschaften und Rohstoffe, German-Namibian Groundwater Exploration Project (Technical Cooperation No. 89. 2034. 0). Reports on hydrogeological and isotope hydrological investigations, Vol. E-II

SCHMIDT G. A. (1997b): Otavi Mountain Land: Groundwater Modelling Part 1 and Part 2. Bundesanstalt für Geowissenschaften und Rohstoffe, German-Namibian Groundwater Exploration Project (Technical Cooperation No. 89. 2034. 0). Reports on hydrogeological and isotope hydrological investigations, Vol. E-III

SCHNEIDER M. B. (1989): Leitlinien der wasserwirtschaftlichen Wasserversorgung. Frankfurter Wirtschafts- und Sozialgeogr. Schriften, Heft 53: 212-228

SEEGER K. G. (1990): An Evaluation of the Groundwater Resources of the Grootfontein Karst Area. DWA unpubl. Report, Windhoek, No. 12/5/G2: 187 p.

SEIMONS & VAN TONDER (1993): Geohydrological characterisation and modelling of the Otjiwarongo marble aquifer in Namibia. Afr. Geosci. Rev., 1: 71-79

SEUFFERT O., BUSCHE D. & LOWE P. (1999): Rainfall structure - rainfall erosivity: New concepts to solve old problems. Petermanns Geographische Mitteilungen, 143(5-6): 475-490

SHARMA M. L. (1986): Measurement and Prediction of Natural Groundwater Recharge - An Overview. J. Hydrol. (N. Z. ), 25(1): 49-57

SHAW P. A. & THOMAS D. S. G. (1996): The quaternary paleoenvironmental history of the Kalahari, Southern Africa. J. arid environm., 32: 9-22

SIMMERS I. (1987): Estimation of Natural Groundwater Recharge. NATO ASI SERIES C, Mathematical and Physical Sciences, Vol. 222, Reidel Publ. Comp., 510 p.

SIMMERS I., HENDRICKX J. M. H., KRUSEMAN G. P. & RUSHTON K. R. (1997): Recharge of Phreatic Aquifers in (Semi-) Arid Areas (ed. by I. Simmers). Intern. Assoc. of Hydrogeologists, 19., Balkema, 277 p.

SIMPSON E. S. & DUCKSTEIN L. (1976): Finite state mixing-cell models. In: Karst Hydrology and Water Resources (ed. by V. Yevjevich), Water Resources Publications, Vol. 2: 489-508, Fort Collins, Colorado.

STUIVER M. & REIMER J. (1993): Extended 14C data base and revised CALIB 3. 0 14C age calibration program. Radiocarbon, 35(1): Tucson: 215-230

STUIVER M. & KRA R. (EDS. ) (1986): Calibration issue. Radiocarbon, 28(2B) Tucson: 805-1030

STUMM W. & MORGAN J. J. (1995): Aquatic Chemistry. 3rd ed. Wiley & Sons, New York, 1022 p.

SZAPIRO S. & STECKEL F. (1967): Physical properties of heavy oxygen water. 2. Vapour pressure. Transactions Faraday Society, 63: 883

THOMAS D. S. G. (1986): The nature and depositional setting of arid and semi-arid Kalahari sediments, Southern Africa. J. Arid Environments, 14: 17-26

THOMAS D. S. G. & SHAW P. A. (1990): The Deposition and Development of the Kalahari Group Sediments, Central Southern Africa. J. African Earth Sci., 10(1/2): 187-197

THOMAS D. S. G. & SHAW P. A. (1992): The Kalahari Environment. Cambridge University Press.

UBELL K. (1977): Hydraulische Methoden zur Bestimmung der Fließvorgänge in klüftigen Gesteinen. Ber. Bundesanst. Gewässerk., p. 105, Koblenz/Germany

UDLUFT P. & BLASY L. (1975): Ermittlung des unterirdischen Abflusses und der nutzbaren Porosität mit Hilfe der Trockenwetter-Auslaufkurve. Z. dt. geol. Ges., 126 (1975): 325-336

UDLUFT P. & SALAMEH E. (1976): Berechnung des Grundwasserabflusses und der Gebietsdurchlässigkeit mit der Wasseranalyse. (Computing Groundwater Runoff and Permeability by Water Analyses). Wasserwirtschaft, 66: 316-319

UDLUFT P. & ZAGANA E. (1994): Computer-aided water budget of the Venetikos catchment area. Proc. of the 7th Congress of the Geol. Soc. Of Greece, XXX/4:267-274

UDLUFT P. & KÜLLS C. (2000): Mapping the availability and dynamics of groundwater recharge Part I: Modelling techniques. (Congress Regional Geological Cartography and Information Systems, München 2000)

UREY H. C. (1947): The thermodynamic properties of isotopic substances. J.Chemical Soc.: 562-581

VAN GENUCHTEN M. TH. (1980): A Closed-form equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J., 44: 892-898

VAN TONDER G. J. & KIRCHER J. (1990): Estimation of natural groundwater recharge in the Karoo aquifers of South Africa. J. Hydrol., 121: 395-419

VEGTER J. R. (1985): Dolomitic water supplies with special reference to southern and western Transvaal. Workshop on groundwater drilling in the Republic of South Africa, Johannesburg.

VERHAGEN B. TH. (1985): Isotope geohydrology; some hydrochemical and water supply insights into the Kalahari. The proceedings of a seminar on the Mineral exploration of the Kalahari(ed. by D. Hutchins & A. P. Lynam): 278-293

VERHAGEN B. TH. (1990): Isotope Hydrology of the Kalahari: Recharge or no Recharge? Univ. Natal, Dep. Geol., Durban, South Africa. Palaeoecology of Africa and of the Surrounding Islands, 21: 143-158

VERHAGEN B. TH. (1992): Detailed geohydrology with environmental isotopes: a case study at Serowe, Botswana. In: Isotope techniques in water resources development 1991. Proc. symposium, Vienna, 1991 (IAEA): 345-362.

VERHAGEN B. TH., MAZOR E. & SELLSHOP J. P. F. (1975): Radiocarbon and tritium evidence for direct rain recharge to groundwaters in the Northern Kalahari. Nature, 249: 203-234

VERHAGEN B. TH., SMITH P. E. & MCGEORGE I. (1979): Tritium profiles in the Kalahari sands as a measure of rain-water recharge. Proc. Isotope Hydrology, Vienna, 1978 (IAEA): 733-751

VERHAGEN B. TH., GEYH M., FRÖHLICH K. & WITH K. (1991): Isotope Hydrological Methods for the Quantitative Evaluation of Ground Water Resources in Arid and Semi-arid Areas - Development of a Methodology. Research reports of the Ministry for economic cooperation of the Fed. Rep. of Germany, 164 p.

VERHAGEN B. TH. (1999): Recharge Quantification with Radiocarbon: Independent Corroboration in Three Karoo Aquifer Studies in Botswana. Internat. Symp. In: Isotope Techniques in Water Resources Development and Management, Vienna, May 1999: 2-12

VOGEL J. C. (1970): Carbon-14 dating of groundwater. In: Isotope Hydrology 1970, IAEA Symposium 129, March 1970, Vienna: 225-239

VOGEL J. C. (1993): Variability of carbon isotope fractionation during photosynthesis. In: Stable Isotopes and Plant Carbon - Water Relations (ed. by J. R. Ehleringer, A. E. Hall & G. D. Farquhar), Academic Press, San Diego, Ca: 28-39

VOGEL J. C. & VAN URK H. (1975): Isotopic composition of groundwater in semi-arid regions of southern Africa. J. Hydrol., 25: 23-36

VOGEL J. C., THILO L. & VAN DIJKEN M. (1974): Determination of groundwater recharge with tritium. J. Hydrol., 23: 131-140

WHEELER D., CRERAR S., SLATER P. & VAN LANGENHOVE G. (1987): Investigation of Recharge Processes to Alluvium in Ephemeral Rivers. In: Proc. of the 1987 Hydrological Sciences Symp., Rhodes Univ., Grahamstown, South Africa. Int. Assoc. Hydrol. Sci., Vol. 2: 395-417

WILLIAMS R. E. (1982): Statistical identification of hydraulic connections between the surface of a mountain and internal mineralized sources. Ground Water, 20(4): 466-478

WOOLHISER D. A., GARDNER H. R. & OLSEN S. R. (1982): Estimation of multiple inflows to a stream reach using water chemistry data. Trans. Am. Soc. Agric. Eng., 25(3): 616-622

WOOLHISER D. A., EMMERICH W. E., & SHIRLEY E. D. (1985): Identification of water sources using normalized chemical ion balances: a laboratory test. J. Hydrol., 65: 205-301

WORTHINGTON P. F. (1976): Geophysical investigations of groundwater potential in Hereroland, South West Africa. Geophysical Division, National Physical Research Laboratory, CSIR, Pretoria, South Africa, Ref: Kon/Gf/73/1, 43 p.

WORTHINGTON P. F. (1979): A Preliminary Appraisal of the Groundwater Resources of Hereroland, South West Africa. Geophysical Division, National Physical Research Laboratory, CSIR, Pretoria, South Africa, 43 p.

WRABEL J. (1999): Ermittlung der Grundwasserneubildung im semi-ariden Bereich Namibias mittels der Chlorid-Bilanz-Methode. Hydrogeologie und Umwelt, 16, Diss., Univ. Würzburg, 155 p.

YAIR A. (1992): The control of headwater area on channel runoff in a small arid watershed. Overland flow - hydraulics and erosion mechanics (ed. Parsons A. J. & Abrahams A. D. ): 53-68

YAIR A. & SHACHAK M. (1987): Studies in watershed ecology of an arid area. In: Progress in Desert Research (ed. Berkofsky L. & Wurtele M. G. ): 145 193

YAKIREVICH A., DODY A., ADAR E. M., BORISOV V., GEYH M. A. & YAIR A. (1998): Distribution of stable isotopes in arid storms. II, A double-component model of kinematic wave flow and transport. Hydrogeology Journal, 6: 66-76

ZAGANA E. & UDLUFT P. (1999): Wasserhaushalt im Aliakmonas Einzugsgebiet, Bilanzierung und Modellierung. Hydrogeologie und Umwelt, 18, 31 p.

ZIMMERMANN U., MÜNNICH K. O. & ROETHER W. (1967): Downward movement of soil moisture traced by means of hydrogen isotopes. In: Isotope techniques in the Hydrologic Cycle, Geophysical Monograph Series, 11, American Geophysical Union.

/usr/www/users/uhydro/doku/data/pages/en/lectures/tracerscript.txt · Last modified: 2024/04/10 10:03 by 127.0.0.1