Iron Precipitation Project (IPP)

This project is carried out by Mengyuan Cai, Minghao Qiu, and Yichen Xu, instructed by Prof. Dr. rer. nat. Dipl.-Hydr. Külls and M. Eng. v.Grafenstein.

<latex>NO_3^-</latex>

The task is to determine the reason and the quantity of iron precipitation in a given water sample from an aquifer, and, perhaps, provide some possible solutions.

Ion balance and activity


In order to examine the result given by the document, ion balances and activity of ions are recalculated.

The calculation example for ion balance of Brunnen 07 Filter 1 Time 1(abbreviated as F1T1) is given as follows.

Ion Molar mass (mg/l) Mass concentration (mg/l)
Anion
Chloride(Cl-) 35.453 16.1
Nitrite(NO2-) 46.006 0.01
Nitrate(NO3-) 62.005 0.10
Sulfate(SO42-) 96.063 16.5
Bicarbonate(HCO3-) 61.017 297.2
Cation
Sodium(Na+) 22.990 9.05
Ammonium(NH4+) 18.038 0.10
Potassium(K+) 39.098 1.70
Calcium(Ca2+) 40.078 96.7
Magnesium(Mg2+) 24.305 6.60
Ferrous(Fe2+) 55.845 0.5

To calculate the ion balance, anion and cation equivalent concentrations are needed.

Anion equivalent concentration $$AEC=\sum_{i=1}^n \frac{c_i*Z_i}{M_i}$$ $$=\frac{c_{Cl^-}*Z_{Cl^-}}{M_{Cl^-}}+\frac{c_{NO_2^-}*Z_{NO_2^-}}{M_{NO_2^-}}+\frac{c_{NO_3^-}*Z_{NO_3^-}}{M_{NO_3^-}}+\frac{c_{SO_4^{2-}}*Z_{SO_4^{2-}}}{M_{SO_4^{2-}}}+\frac{c_{HCO_3^-}*Z_{HCO_3^-}}{M_{HCO_3^-}}$$ $$=5.670\ meq/l$$

Cation equivalent concentration $$CEC=\sum_{i=1}^n \frac{c_i*Z_i}{M_i}$$ $$=\frac{c_{Na^+}*Z_{Na^+}}{M_{Na^+}}+\frac{c_{NH_4^+}*Z_{NH_4^+}}{M_{NH_4^+}}+\frac{c_{K^+}*Z_{K^+}}{M_{K^+}}+\frac{c_{Ca^{2+}}*Z_{Ca^{2+}}}{M_{Ca^{2+}}}+\frac{c_{Mg^{2+}}*Z_{Mg^{2+}}}{M_{Mg^{2+}}}+\frac{c_{Fe^{2+}}*Z_{Fe^{2+}}}{M_{Fe^{2+}}}$$ $$=5.829\ meq/l$$

In which c=mass concentration of ion, Z=charge of ion, M=molar mass of ion.

$$Ion\ balance=\frac{AEC-CEC}{AEC+CEC}=-1.383\%$$

To calculate activity of ions, ion strength and activity coefficients for monovalent and bivalent ions are needed.

Ion strength $$I=\frac{1}{2} \sum_{i=1}^n c_i*z_i$$ $$=c_{Cl^-}*Z_{Cl^-}+c_{NO_2^-}*Z_{NO_2^-}+c_{NO_3^-}*Z_{NO_3^-}+c_{SO_4^{2-}}*Z_{SO_4^{2-}}+c_{HCO_3^-}*Z_{HCO_3^-}$$ $$+c_{Na^+}*Z_{Na^+}+c_{NH_4^+}*Z_{NH_4^+}+c_{K^+}*Z_{K^+}+c_{Ca^{2+}}*Z_{Ca^{2+}}+c_{Mg^{2+}}*Z_{Mg^{2+}}+c_{Fe^{2+}}*Z_{Fe^{2+}}$$ $$=8.6148*10^{-3}\ eq/l$$

In which c=molar concentration of ion.

To calculate the activity coefficient, Debye-Hückel equation is used.

$$log{\gamma_i}=-\frac{A*Z_i^2*\sqrt{I}}{1+a_i*B*\sqrt{I}}$$

In which A=0.4960, B=0.3258*10-8 at 10°C, and the values of ai are shown as follows.

a0 (*108) Ion
2.5 NH4+
3 K-, Cl-, NO3-
4 SO42+
4.0-4.5 Na+, HCO3-
6 Ca2+, Fe2+
8 Mg2+
9 Fe3+

Since the ai value of NO2- is missing in the table, the ai value of NO3- is used instead. Moreover, the ai value of Na+, HCO3- is chosen as 4.25 since the error caused by the ai value is not significant.

The calculated activity coefficients of ions are as follows.

Activity coefficient γ
NH4+ 0.90614759
K-, Cl-, NO3-, NO2- 0.90738638
SO42+ 0.68505193
Na+, HCO3- 0.91034496
Ca2+, Fe2+ 0.69844622
Mg2+ 0.71076069
Fe3+ 0.71655243

Results of activity of ions are as follows.

Ion Activity (mol/l)
Chloride(Cl-) 4.12064*10-4
Nitrite(NO2-) 1.97232*10-7
Nitrate(NO3-) 1.46341*10-6
Sulfate(SO42-) 1.17666*10-4
Bicarbonate(HCO3-) 4.43408*10-3
Sodium(Na+) 3.58357*10-4
Ammonium(NH4+) 5.02355*10-6
Potassium(K+) 3.94536*10-5
Calcium(Ca2+) 1.68521*10-3
Magnesium(Mg2+) 1.93006*10-4
Ferrous(Fe2+) 6.25344*10-6

The results of all calculations are as follows.

The results of ion balance calculations are as follows.

Br7 T1 Br7 T2 Br7 T4
-2.74% -1.83% -2.39%
F1 T1 F1 T2 F1 T3 F1 T4
-1.38% -1.56% -1.95% -2.25%
F2 T1 F2 T2 F2 T3 F2 T4
-2.24% -2.90% -2.14% -2.25%

The results of activity calculations are as follows.

Activity a (mol/l) Br7 T1 Br7 T2 Br7 T4
Chloride(Cl-) 3.33531*10-4 3.13601*10-4 3.15872*10-4
Nitrite(NO2-) 1.97714*10-7 1.98089*10-7 1.97902*10-7
Nitrate(NO3-) 2.14177*10-5 5.14414*10-5 5.13927*10-5
Sulfate(SO42-) 1.54051*10-4 1.35587*10-4 1.35823*10-4
Bicarbonate(HCO3-) 4.24256*10-3 4.18718*10-3 4.24633*10-3
Sodium(Na+) 4.00871*10-4 3.50689*10-4 3.38858*10-4
Ammonium(NH4+) 5.03583*10-6 6.05480*10-6 7.05706*10-6
Potassium(K+) 2.62886*10-5 4.14890*10-5 4.28469*10-5
Calcium(Ca2+) 1.63862*10-3 1.57850*10-3 1.61396*10-3
Magnesium(Mg2+) 2.27352*10-4 2.12972*10-4 2.25064*10-4
Iron(Fe2+) 1.23654*10-5 1.43509*10-5 1.40513*10-5
Activity a (mol/l) F1 T1 F1 T2 F1 T3 F1 T4
Chloride(Cl-) 4.12064*10-4 4.19508*10-4 4.19766*10-4 4.17044*10-4
Nitrite(NO2-) 1.97232*10-7 1.97122*10-7 1.97243*10-7 1.97167*10-7
Nitrate(NO3-) 1.46341*10-6 1.46259*10-6 1.46349*10-6 1.46292*10-6
Sulfate(SO42-) 1.17666*10-4 1.21687*10-4 1.20544*10-4 1.20367*10-4
Bicarbonate(HCO3-) 4.43408*10-3 4.45861*10-3 4.37015*10-3 4.39542*10-3
Sodium(Na+) 3.58357*10-4 3.53420*10-4 3.57187*10-4 3.59829*10-4
Ammonium(NH4+) 5.02355*10-6 5.02066*10-6 5.02383*10-6 5.02183*10-6
Potassium(K+) 3.94536*10-5 3.71120*10-5 3.71348*10-5 3.78165*10-5
Calcium(Ca2+) 1.68521*10-3 1.68547*10-3 1.67681*10-3 1.69200*10-3
Magnesium(Mg2+) 1.93006*10-4 2.12817*10-4 2.01813*10-4 2.05078*10-4
Iron(Fe2+) 6.25344*10-6 1.12347*10-5 1.12583*10-5 1.12434*10-5
Activity a (mol/l) F2 T1 F2 T2 F2 T3 F2 T4
Chloride(Cl-) 2.17596*10-4 2.14859*10-4 2.17818*10-4 2.20081*10-4
Nitrite(NO2-) 1.98207*10-7 1.99200*10-7 1.99308*10-7 1.99263*10-7
Nitrate(NO3-) 5.29430*10-6 1.47801*10-6 1.47881*10-6 1.47847*10-6
Sulfate(SO42-) 1.13653*10-4 1.22435*10-4 1.23461*10-4 1.22466*10-4
Bicarbonate(HCO3-) 4.03852*10-3 3.93684*10-3 3.92003*10-3 3.93779*10-3
Sodium(Na+) 3.09254*10-4 2.98214*10-4 3.02365*10-4 3.01897*10-4
Ammonium(NH4+) 5.05292*10-6 5.05517*10-6 7.58737*10-6 7.58544*10-6
Potassium(K+) 3.59861*10-5 4.06768*10-5 4.21038*10-5 4.06905*10-5
Calcium(Ca2+) 1.86997*10-3 1.84082*10-3 1.80729*10-3 1.82069*10-3
Magnesium(Mg2+) 2.61300*10-4 2.57208*10-4 2.45161*10-4 2.47395*10-4
Iron(Fe2+) 1.31731*10-6 2.10847*10-5 2.20841*10-5 2.17499*10-5

Visualization


This is the Piper Diagram of all samples. It shows that all the water samples have a relatively high consistency, which means the water at the sampling site is highly homogeneous.

This is the Schoeller Diagram of all samples. It shows that although the water is highly homogeneous, there are differences between the Cl- and SO42- concentration of Filter 1 and Filter 2.

Redox potential


Due to the absence of data of Fe3+ concentration, assumptions are needed when doing the following calculations. Thus, 3 assumptions are made as follows.

1. Since every device has its detecting limit, it is possible that the Fe3+ could be just below the detecting threshold.

2. Since there is iron precipitation in the water sample, it is also possible that all the iron precipitation contains Fe3+, which are all previously dissolved in the water.

3. It is reasonable to assume that the Fe3+ concentration is dissolved part of Fe(OH)3 in the water at equilibrium.

According to the calculations, the first two assumptions are not likely to be true because the pe value is too high, which is high enough to cause the dissociation of water itself. Therefore, only the methodology of calculation and result is given as follows.

F1 T1 is taken as an example.

$$[Fe^{3+}]=\frac{K_{sp}}{[OH^-]^3}=\frac{1.1*10^{-36}}{10^{-(14.534617-7.2)*3}}=1.1098*10^{-14}\ mol/l$$

In which Ksp=1.1*10-36 is the solubility product at 18°C because the solubility product at 10°C is not available, and 10-14.534617 is the ion product of water at 10°C.

$$pe=pe^0+\log \frac{[Fe^{3+}]}{[Fe^{2+}]}=13+\log \frac{1.1098*10^{-14}}{6.25344*10^{-6}}=4.2491$$

In which pe0=13 is the standard pe at 25°C because the standard pe at 10°C is not available.

The results of all redox potential calculations are as follows.

Br7 T1 Br7 T2 Br7 T4
3.3530 3.2884 3.2975
F1 T1 F1 T2 F1 T3 F1 T4
4.2491 3.9947 3.9938 3.9943
F2 T1 F2 T2 F2 T3 F2 T4
4.9256 3.7213 3.7012 3.7078

Carbon balance


In order to obtain the activity of CO32-, which might be responsible for the precipitation of Calcite, Dolomite, and Siderite, the carbon balance is calculated.

The calculation example of carbon balance of F1 T1 is given as follows.

$$CO_2(g) + H_2O \rightleftharpoons H_2CO_3$$

$$K_0=\frac {[H_2CO_3]}{[CO_2]}=5.37*10^{-2}$$

$$H_2CO_3 \rightleftharpoons H^+ + HCO_3^-$$

$$K_1=\frac {[H^+][HCO_3^-]}{[H_2CO_3]}=3.47*10^{-7}$$

$$HCO_3^- \rightleftharpoons H^+ + CO_3^{2-}$$

$$K_2=\frac {[H^+][CO_3^{2-}]}{[HCO_3^-]}=2.75*10^{-11}$$

The activity of HCO3- is calculated previously.

$$[HCO_3^-]=4.43408*10^{-3}\ mol/l$$

Therefore, $$[CO_2(g)]=1.50*10^{-2}\ mol/l$$

$$[H_2CO_3]=8.07*10^{-4}\ mol/l$$

$$[CO_3^{2-}]=1.94*10^{-6}\ mol/l$$

The results of all carbon balance calculations are as follows.

Activity a (mol/l) Br7 T1 Br7 T2 Br7 T4
[CO2(g)] 9.07*10-3 8.95*10-3 9.08*10-3
[H2CO3] 4.87*10-4 4.81*10-4 4.88*10-4
[CO32-] 2.94*10-6 2.90*10-6 2.94*10-6
Activity a (mol/l) F1 T1 F1 T2 F1 T3 F1 T4
[CO2(g)] 1.50*10-2 1.51*10-2 1.48*10-2 1.49*10-2
[H2CO3] 8.07*10-4 8.11*10-4 7.95*10-4 8.00*10-4
[CO32-] 1.94*10-6 1.95*10-6 1.91*10-6 1.92*10-6
Activity a (mol/l) F2 T1 F2 T2 F2 T3 F2 T4
[CO2(g)] 8.63*10-3 8.42*10-3 8.38*10-3 8.42*10-3
[H2CO3] 4.64*10-4 4.52*10-4 4.50*10-4 4.52*10-4
[CO32-] 2.79*10-6 2.72*10-6 2.71*10-6 2.72*10-6

Saturation indices(SI)


It is clear that not all compounds that exist in the water can form a precipitation. Therefore, only saturation indices(SI) of those that are possible to form a precipitation need to be determined. The compounds that can form a precipitation are CaCO3, MgCO3, FeCO3, Fe(OH)2, and Fe(OH)3. However, for the water samples from Filter 1 and Filter 2, when calculating the redox potential, Fe(OH)3 is assumed as at equilibrium. Thus, the SI of Fe(OH)3 of those samples are 0. As for Brunnen 07, the SI of Fe(OH)3 can be calculated.

The calculation example of saturation indices of F1 T1 is given as follows.

CaCO3 is taken as an example.

$$SI_{CaCO_3}=\log \frac{[Ca^{2+}][CO_3^{2+}]}{K_{sp}}=0.1435$$

In which Ksp=10-8.36 is the solubility product of Calcite at 10°C.

The results of all saturation indices of F1 T1 are as follows.

Compounds Saturation indices SI
CaCO3 0.1435
MgCO3 -4.5726
CaSO4 -2.4880
FeCO3 0.0519
Fe(OH)2 -5.6880

The results of all saturation indices calculations are as follows.

Saturation indices SI Br7 T1 Br7 T2 Br7 T4
CaCO3 0.1121 0.0902 0.1059
MgCO3 -4.5206 -4.5547 -4.5247
CaSO4 -2.7379 -2.5455 -2.5254
FeCO3 0.3288 0.3878 0.3847
Fe(OH)2 -8.3919 -8.3272 -8.3364
Fe(OH)3 -0.7451 -1.0856 -0.9650
Saturation indices SI F1 T1 F1 T2 F1 T3 F1 T4
CaCO3 0.1435 0.1459 0.1350 0.1414
MgCO3 -4.5726 -4.5278 -4.5595 -4.5501
CaSO4 -2.4880 -2.4734 -2.4797 -2.4764
FeCO3 0.0519 0.3087 0.3009 0.3029
Fe(OH)2 -5.6880 -5.4335 -5.4326 -5.4332
Saturation indices SI F2 T1 F2 T2 F2 T3 F2 T4
CaCO3 0.1481 0.1302 0.1203 0.1255
MgCO3 -4.4816 -4.4995 -4.5222 -4.5163
CaSO4 -2.4579 -2.4324 -2.4368 -2.4371
FeCO3 -0.6651 0.5281 0.5463 0.5417
Fe(OH)2 -9.3644 -8.1601 -8.1400 -8.1466

Modeling


Modeling with PHREEQC

After calculating all the data manually, a program called 'PHREEQC' is used to establish the models.

These models are used to investigate:

1)the saturation indices of different minerals that can exist in the water samples;

2)the sensitivity of the minerals to the change of temperature, pH, and pe;

3)the results of mixing two water samples from F1 and F2 in different ratio.

(Due to the problems of PHREEQC about calculations in redox reactions, the sensitivity related to pe level will not be taken into consideration. Moreover, the results of mixing are only relative data.)

Saturation indices

pH=7.2 pe=2 Calcite Dolomite Gypsum Anhydrite Siderite Goethite Fe(OH)3(a) Jarosite
Br7 T1 -0.0692 -1.1042 -2.1038 -2.5752 0.0763 -1.7034 -7.0254 -32.3761
T2 -0.0908 -1.1600 -2.1727 -2.6445 0.1360 -2.0420 -7.3626 -33.2996
T4 -0.0747 -1.1128 -2.1640 -2.6353 0.1324 -1.9237 -7.2461 -32.9336
F1 T1 -0.0276 -1.0977 -2.2038 -2.6709 -0.1941 -0.9141 -6.2508 -30.0733
T2 -0.0240 -1.0463 -2.1902 -2.6562 0.0638 -0.9159 -6.2566 -30.0808
T3 -0.0346 -1.0882 -2.1958 -2.6618 0.0582 -0.9158 -6.2565 -30.0876
T4 -0.0283 -1.0726 -2.1931 -2.6591 0.0596 -0.9159 -6.2565 -30.0823
F2 T1 -0.1374 -1.2231 -2.3982 -2.8642 -1.0161 -3.9137 -9.2543 -39.3805
T2 -0.1566 -1.2634 -2.3707 -2.8379 0.1779 -3.9119 -9.2486 -39.2515
T3 -0.1656 -1.2943 -2.3726 -2.8397 0.1972 -3.9118 -9.2485 -39.2252
T4 -0.1608 -1.2839 -2.3738 -2.8410 0.1918 -3.9118 -9.2485 -39.2486

Sensitivity

The temperature sensitivity of all water samples are shown as follows.

(For each graph, the x-axis is temperature, and the y-axes are saturation indices. The saturation indices of Fe(OH)3(a) should be read from the secondary axis.)

The pH sensitivity of all water samples are shown as follows.

Site Time pH si_Calcite si_Siderite si_Goethite si_Fe(OH)3(a)
Br7 T1 6.8 -0.4679 -0.3159 -1.9537 -7.2758
7.0 -0.2684 -0.1189 -1.8176 -7.1397
7.2 -0.0692 0.0763 -1.7034 -7.0254
7.4 0.1295 0.2689 -1.6127 -6.9348
T2 6.8 -0.4895 -0.2562 -2.2924 -7.6130
7.0 -0.2900 -0.0592 -2.1563 -7.4769
7.2 -0.0908 0.1360 -2.0420 -7.3626
7.4 0.1079 0.3286 -1.9514 -7.2720
T4 6.8 -0.4733 -0.2598 -2.1739 -7.4963
7.0 -0.2739 -0.0628 -2.0379 -7.3603
7.2 -0.0747 0.1324 -1.9237 -7.2461
7.4 0.1240 0.3249 -1.8331 -7.1555
Site Time pH si_Calcite si_Siderite si_Goethite si_Fe(OH)3(a)
F1 T1 6.8 -0.4262 -0.5860 -0.4180 -5.7547
7.0 -0.2268 -0.3892 -0.2827 -5.6194
7.2 -0.0276 -0.1941 -0.1693 -5.5060
7.4 0.1711 -0.0019 -0.0796 -5.4163
T2 6.8 -0.4226 -0.3280 -0.4188 -5.7594
7.0 -0.2231 -0.1312 -0.2836 -5.6243
7.2 -0.0240 0.0638 -0.1705 -5.5111
7.4 0.1746 0.2561 -0.0809 -5.4216
T3 6.8 -0.4332 -0.3337 -0.4194 -5.7600
7.0 -0.2338 -0.1368 -0.2843 -5.6249
7.2 -0.0346 0.0582 -0.1711 -5.5118
7.4 0.1640 0.2506 -0.0816 -5.4223
T4 6.8 -0.4269 -0.3323 -0.4190 -5.7596
7.0 -0.2274 -0.1355 -0.2839 -5.6245
7.2 -0.0283 0.0596 -0.1707 -5.5113
7.4 0.1703 0.2519 -0.0812 -5.4218
Site Time pH si_Calcite si_Siderite si_Goethite si_Fe(OH)3(a)
F2 T1 6.8 -0.5361 -1.4085 -0.5283 -5.8690
7.0 -0.3366 -1.2115 -0.3935 -5.7341
7.2 -0.1374 -1.0161 -0.2806 -5.6213
7.4 0.0614 -0.8234 -0.1914 -5.5320
T2 6.8 -0.5553 -0.2146 -0.5270 -5.8637
7.0 -0.3558 -0.0175 -0.3920 -5.7287
7.2 -0.1566 0.1779 -0.2789 -5.6156
7.4 0.0421 0.3707 -0.1895 -5.5262
T3 6.8 -0.5643 -0.1953 -0.5271 -5.8638
7.0 -0.3648 0.0018 -0.3921 -5.7288
7.2 -0.1656 0.1972 -0.2790 -5.6157
7.4 0.0331 0.3900 -0.1896 -5.5263
T4 6.8 -0.5595 -0.2007 -0.5271 -5.8637
7.0 -0.3600 -0.0036 -0.3920 -5.7287
7.2 -0.1608 0.1918 -0.2790 -5.6157
7.4 0.0379 0.3846 -0.1896 -5.5262

Mixing

To understand the consequence of the mixing of water from F1 and F2, different simulations with different mixing ratios are made.

(For each graph, the x-axis is ratio of F1 to total mixing water.)

Modeling with aqion

Another computer modeling software called 'aqion' is also used. The results are as follows.

Br7 T1 T2 T4
pe 8.08 2.07 2.09
Eh mV 454 116 117
Fe mg/L 0.000273 0.5 0.48
Fe(2) mg/L 5.31E-07 0.5 0.48
Fe(3) mg/L 0.000273 0.000268 0.000269
NH4 mg/L - 0.12 0.14
NO2 mg/L 0.404 0.26 0.26
NO3 mg/L 0.916 5.85E-13 6.42E-13
Fe(OH)3(a) mg/L 3.67 1.57 1.3
Siderite mg/L 0 0 0
CO2 mmol/L 0.77 0.76 0.77
HCO3- mmol/L 4.59 4.53 4.6
F1 T1 T2 T3 T4
pe 2.03 1.84 1.83 1.83
Eh mV 114 103 103 103
Fe mg/L 0.5 0.777 0.787 0.784
Fe(2) mg/L 0.5 0.777 0.786 0.784
Fe(3) mg/L 0.000278 0.000282 0.000282 0.000282
NH4 mg/L - - - -
NO2 mg/L - - - -
NO3 mg/L - - - -
Fe(OH)3(a) mg/L 0.172 0.172 0.0951 0.0377
Siderite mg/L 0 0.256 0.236 0.241
CO2 mmol/L 0.8 0.8 0.79 0.79
HCO3- mmol/L 4.82 4.84 4.75 4.77
F2 T1 T2 T3 T4
pe 8.35 1.79 1.79 1.79
Eh mV 470 101 100 100
Fe mg/L 0.000284 0.868 0.863 0.858
Fe(2) mg/L 2.40E-07 0.868 0.863 0.858
Fe(3) mg/L 0.000284 0.00028 0.000279 0.000279
NH4 mg/L - - 0.15 0.15
NO2 mg/L 0.033 - - -
NO3 mg/L 0.316 - - -
Fe(OH)3(a) mg/L 2.85 1.28 0.344 0.0951
Siderite mg/L 0 0.856 0.99 0.958
CO2 mmol/L 0.71 0.7 0.7 0.7
HCO3- mmol/L 4.27 4.16 4.15 4.17

Data

The original data and softwares are contained in the folder and extra page materials.